
Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.2, Problem 2EYU
Consider two objects with the following characteristics: Object 1 is a hoop with mass M and radius R; object 2 is a disk with mass 2M and radius 2R. Suppose a torque T is applied to object 1, and a torque 2T is applied to object 2. Is the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects.
(a) Find the time interval required for the proton to travel 6.00 cm horizontally.
83.33
☑
Your response differs from the correct answer by more than 10%. Double check your calculations. ns
(b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)
2.77
Your response differs from the correct answer by more than 10%. Double check your calculations. mm
(c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally.
5.4e5
V
×
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
(1)
Fm
Fmn
mn
Fm
B
W₁
e
Fmt
W
0
Fit
Wt
0
W
Fit
Fin
n
Fmt
n
As illustrated in Fig.
consider the
person
performing extension/flexion movements of the lower leg
about the knee joint (point O) to investigate the forces and
torques produced by muscles crossing the knee joint. The
setup of the experiment is described in Example
above.
The geometric parameters of the model under investigation,
some of the forces acting on the lower leg and its free-body
diagrams are shown in Figs. and For this system, the
angular displacement, angular velocity, and angular accelera-
tion of the lower leg were computed using data obtained
during the experiment such that at an instant when 0 = 65°,
@ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys-
tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net
torque generated about the knee joint is M₁ = 55 Nm. If the
torque generated about the knee joint by the weight of the lower
leg is Mw 11.5 Nm, determine:
=
The moment arm a of Fm relative to the…
The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y
->
axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed
along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis.
Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-
axis in the range (-180°, 180°]) of the net force that acts on the particle.
+x
+z
AB
90
+y
Chapter 11 Solutions
Physics (5th Edition)
Ch. 11.1 - A bicycle wheel is mounted on an axle, as shown in...Ch. 11.2 - Consider two objects with the following...Ch. 11.3 - A Physics sign is supported symmetrically by two...Ch. 11.4 - A mobile made from three piggy banks (A, B, C) is...Ch. 11.5 - Prob. 5EYUCh. 11.6 - Consider two objects with the following...Ch. 11.7 - Prob. 7EYUCh. 11.8 - In system 1, a torque of 20 N m acts through an...Ch. 11.9 - The angular velocity of the spinning bicycle wheel...Ch. 11 - Two forces produce the same torque. Does it follow...
Ch. 11 - A car pitches down in front when the brakes are...Ch. 11 - A tightrope walker uses a long pole to aid in...Ch. 11 - When a motorcycle accelerates rapidly from a stop...Ch. 11 - Give an example of a system in which the net...Ch. 11 - Give an example of a system in which the net force...Ch. 11 - Is the normal force exerted by the ground the same...Ch. 11 - Give two everyday examples of objects that are not...Ch. 11 - Give two everyday examples of objects that are in...Ch. 11 - Can an object have zero translational acceleration...Ch. 11 - Stars form when a large rotating cloud of gas...Ch. 11 - What purpose does the tail rotor on a helicopter...Ch. 11 - Is it possible to change the angular momentum of...Ch. 11 - Suppose a diver springs into the air with no...Ch. 11 - To tighten a spark plug, it is recommended that a...Ch. 11 - Pulling a Weed The gardening tool shown in Figure...Ch. 11 - A person slowly lowers a 3.6-kg crab trap over the...Ch. 11 - A squirrel-proof bird feeder has a lever that...Ch. 11 - At one position during its cycle, the foot pushes...Ch. 11 - BIO Predict/Calculate Force to Hold a Baseball A...Ch. 11 - At the local playground, a 21-kg child sits on the...Ch. 11 - Predict/Explain Consider the pulley-block systems...Ch. 11 - Suppose a torque rotates your body about one of...Ch. 11 - A torque of 0.97 N m is applied to a bicycle...Ch. 11 - When a ceiling fan rotating with an angular speed...Ch. 11 - When the play button is pressed, a CD accelerates...Ch. 11 - A person holds a ladder horizontally at its...Ch. 11 - A 0.180-kg wooden rod is 1.25 m long and pivots at...Ch. 11 - Predict/Calculate A wheel on a game show is given...Ch. 11 - The L-shaped object in Figure 11-41 consists of...Ch. 11 - The L-shaped object described in the previous...Ch. 11 - A motorcycle accelerates from rest, and both the...Ch. 11 - Predict/Calculate A torque of 13 N m is applied...Ch. 11 - Predict/Explain Suppose the person in Example...Ch. 11 - A string that passes over a pulley has a 0.321-kg...Ch. 11 - To loosen the lid on a jar of jam 7.6 cm in...Ch. 11 - BIO Predict/Calculate Referring to the person...Ch. 11 - Prob. 24PCECh. 11 - Prob. 25PCECh. 11 - Predict/Calculate A schoolyard teeter-totter with...Ch. 11 - A 0.122-kg remote control 23.0 cm long rests on a...Ch. 11 - Predict/Calculate A 0.16-kg meterstick is held...Ch. 11 - Prob. 29PCECh. 11 - A uniform metal rod, with a mass of 2.0 kg and a...Ch. 11 - Prob. 31PCECh. 11 - In Figure 11-46 two acrobats perform a balancing...Ch. 11 - BIO Forces in the Foot In Figure 11-47 we see the...Ch. 11 - A stick with a mass of 0.214 kg and a length of...Ch. 11 - Prob. 35PCECh. 11 - If the cat in Example 11-9 has a mass of 3.9 kg,...Ch. 11 - Prob. 37PCECh. 11 - Maximum Overhang Three identical, uniform books of...Ch. 11 - A baseball bat balances 71.1 cm from one end. If a...Ch. 11 - A 2.85-kg bucket is attached to a rope wrapped...Ch. 11 - A child exerts a tangential 53 4-N force on the...Ch. 11 - Predict/Calculate You pull downward with a force...Ch. 11 - One elevator arrangement includes the passenger...Ch. 11 - Atwood's Machine An Atwoods machine consists of...Ch. 11 - A 1.4-kg bicycle tire with a radius of 33 cm...Ch. 11 - Jogger 1 in Figure 11-51 has a mass of 65.3 kg and...Ch. 11 - Predict/Calculate Suppose jogger 3 in Figure 11-51...Ch. 11 - A torque of 0.12 N m is applied to an egg beater...Ch. 11 - A windmill has an initial angular momentum of 8500...Ch. 11 - Two gerbils run in place with a linear speed of...Ch. 11 - Predict/Explain A student rotates on a...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - As an ice skater begins a spin, his angular speed...Ch. 11 - A disk-shaped merry-go-round of radius 2.63 m and...Ch. 11 - A student sits at rest on a piano stool that can...Ch. 11 - Predict/Calculate A turntable with a moment of...Ch. 11 - A student on a piano stool rotates freely with an...Ch. 11 - Walking on a Merry-Go-Round A child of mass m...Ch. 11 - Predict/Explain Two spheres of equal mass and...Ch. 11 - Turning a doorknob through 0.25 of a revolution...Ch. 11 - A person exerts a tangential force of 36.1 N on...Ch. 11 - To prepare homemade ice cream a crank must be...Ch. 11 - Power of a Dental Drill A popular make of dental...Ch. 11 - For a home repair job you must turn the handle of...Ch. 11 - The L-shaped object in Figure 11-40 consists of...Ch. 11 - The rectangular object in Figure 11-41 consists of...Ch. 11 - Predict/Calculate A circular saw blade accelerates...Ch. 11 - CE A uniform disk stands upright on its edge, and...Ch. 11 - CE Consider the two rotating systems shown in...Ch. 11 - CE Predict/Explain A disk and a hoop (bicycle...Ch. 11 - CE A beetle sits at the nm of a turntable that is...Ch. 11 - After getting a drink of water a hamster jumps...Ch. 11 - A 47.0-kg uniform rod 4.25 m long is attached to a...Ch. 11 - Prob. 75GPCh. 11 - BIO The Masseter Muscle The masseter muscle, the...Ch. 11 - Exercising the Biceps You are designing exercise...Ch. 11 - Prob. 78GPCh. 11 - In Example 11-11, suppose the ladder is uniform,...Ch. 11 - When you arrive at Dukes Dude Ranch you are...Ch. 11 - Prob. 81GPCh. 11 - Flats Versus Heels A woman might wear a pair of...Ch. 11 - BIO A young girl sits at the edge of a dock by the...Ch. 11 - BIO Deltoid Muscle A crossing guard holds a STOP...Ch. 11 - BIO Triceps To determine the force a persons...Ch. 11 - Predict/Calculate Suppose partial melting of the...Ch. 11 - A bicycle wheel of radius R and mass M is at rest...Ch. 11 - A 0.101-kg yo-yo has an outer radius R that is...Ch. 11 - BIO Peak Pedaling Torque The downward force...Ch. 11 - A cylinder of mass m and radius r has a string...Ch. 11 - Bricks in Equilibrium Consider a system of four...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - Referring to Example 11-14 Suppose the mass of the...Ch. 11 - Prob. 97PPCh. 11 - Referring to Quick Example 11-22 Suppose the child...Ch. 11 - Referring to Quick Example 11-22 Suppose...
Additional Science Textbook Solutions
Find more solutions based on key concepts
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relative...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forward
- A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/sarrow_forward
- A proton moves at 5.20 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.)arrow_forwardThe figure below shows the electric field lines for two charged particles separated by a small distance. 92 91 (a) Determine the ratio 91/92. 1/3 × This is the correct magnitude for the ratio. (b) What are the signs of q₁ and 92? 91 positive 92 negative ×arrow_forwardPlease help me solve this one more detail, thanksarrow_forward
- A dielectric-filled parallel-plate capacitor has plate area A = 20.0 ccm2 , plate separaton d = 10.0 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V = 12.5 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2 . Find the energy U1 of the dielectric-filled capacitor. The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery. Find the energy U2 of the capacitor at the moment when the capacitor is half-filled with the dielectric. The capacitor is now disconnected from the battery, and the dielectric plate is slowly removed the rest of the way out of the capacitor. Find the new energy of the capacitor, U3. In the process of removing the remaining portion of the dielectric from the disconnected capacitor, how much work W is done by the external agent acting on the dielectric?arrow_forwardIn (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.arrow_forwardI need help with these questions again. A step by step working out with diagrams that explains more clearlyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License