Suppose that an object starts with an initial velocity of v 0 (in ft/sec) and moves under a constant acceleration a in ft/sec 2 . Then the velocity v n (in ft/sec) after n seconds is given by v n = v 0 + a n . Show that this sequence is arithmetic.
Suppose that an object starts with an initial velocity of v 0 (in ft/sec) and moves under a constant acceleration a in ft/sec 2 . Then the velocity v n (in ft/sec) after n seconds is given by v n = v 0 + a n . Show that this sequence is arithmetic.
Solution Summary: The author explains that the sequence, v_n = arithmetic, where, the initial velocity, constant acceleration, and velocity after n seconds should be constant.
Suppose that an object starts with an initial velocity of
v
0
(in ft/sec) and moves under a constant acceleration
a
in ft/sec
2
. Then the velocity
v
n
(in ft/sec) after
n
seconds is given by
v
n
=
v
0
+
a
n
. Show that this sequence is arithmetic.
3) If a is a positive number, what is the value of the following double integral?
2a
Love Lv
2ay-y²
.x2 + y2 dady
16. Solve each of the following equations for x.
(a) 42x+1 = 64
(b) 27-3815
(c) 92. 27² = 3-1
(d) log x + log(x - 21) = 2
(e) 3 = 14
(f) 2x+1 = 51-2x
11. Find the composition fog and gof for the following functions.
2
(a) f(x) = 2x+5, g(x) = x²
2
(b) f(x) = x²+x, g(x) = √√x
1
(c) f(x) = -1/2)
9
9(x) =
х
=
-
X
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.