(a)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Hydrogen bonding.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Hydrogen bonding can also be defined as coulombic attraction between the hydrogen atom and an electronegative atom. It is a special type of Dipole-Dipole interaction.
(b)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Hydrogen bonding.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Hydrogen bonding can also be defined as coulombic attraction between the hydrogen atom and an electronegative atom. It is a special type of Dipole-Dipole interaction.
(c)
Interpretation:
The type(s) of intermolecular forces existing in between the molecules of the given compounds have to be identified.
Concept Introduction:
Intermolecular forces are the forces existing between molecules, atoms, ions or dipoles.
Depending upon the type of species involved, the intermolecular forces can be classified as follows:
- Dipole-Dipole interactions.
- Ion-Dipole interactions.
- Dipole-induced dipole interactions.
- Ion-induced dipole interactions.
- Dispersion forces.
- Hydrogen bonding.
- Dipole-Dipole interaction is the interaction between two polar molecules which have net dipole moments.
- Ion-Dipole interaction is the interaction between an ionic species (such as cation or anion) and a polar molecule.
- Dipole-induced dipole is the interaction between an atom (non- polar species) and a polar molecule. In this interaction, a polar molecule induces its dipole moment to a non-polar species which lacks dipole moment.
- Ion-induced dipole interaction is the interaction between an atom (non- polar species) and an ionic species. In this interaction, an ionic species such as cation or anion, induces dipole in a non-polar species which lacks dipole moment.
- Dispersion force is the interaction between non-polar molecules.
- Hydrogen bonding can also be defined as coulombic attraction between the hydrogen atom and an electronegative atom. It is a special type of Dipole-Dipole interaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
CHEMISTRY-ALEKS 360 ACCESS
- 14.32 What diene and dienophile are needed to prepare each compound by a Diels-Alder reaction? a. b.arrow_forward14.34 Draw all reasonable resonance structures for each species. a. b. Ö :0: C. :0: :0: d. OH e. f. :O:arrow_forward7. The standard reduction potentials for two half-reactions are shown above. Which of the statements listed below will be true for the following reaction taking place under standard conditions? a. E° b. E° c. E° = d. E° e. E° = Al (s) + Cr³+ → Al³+ + Cr (s) 0.93 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous 2.39 V, and the reaction is not spontaneous 2.39 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous Cu2+ + 2e → Cu E° = +0.34 V Zn2+ + 2e → Zn E° = -0.76 V E° = -1.18 V Mn2+ + 2e → Mn 8. Based on the above reduction potential, which of the following reactions will occur spontaneously? a. Mn²+ + Cu → Mn + Cu2+ b. Mn²+ + Zn → Mn + Zn²+ c. Zn2+ + Cu → Zn + Cu²+ d. Zn²+ + Mn → Zn + Mn2+ e. Cu²+ + Zn²+ → Cu + Znarrow_forward
- 14.35 For which compounds can a second resonance structure be drawn? Draw an additional resonance structure and the hybrid for each resonance-stabilized compound. a. OCH3 OCH 3 b. C. d. CH3 NHCH3arrow_forwardpls help on all, inlcude all steps.arrow_forwardpls help on all, inlcude all steps.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY