
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
11th Edition
ISBN: 9780134756967
Author: Hal Saunders, Robert Carman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11.2, Problem 10AE
To determine
Whether the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q5:
06:
the foot lies between 3 and 4.
(20 Marks)
Let f(x) = 3*, use Lagrange interpolation to find a second-degree polynomial that agrees with this
function at the points x₁ = 0, x₁ = 1, x2 = 2.
Questions
An insurance company's cumulative incurred claims for the last 5 accident years are given
in the following table:
Development Year
Accident Year 0
2018
1 2 3 4
245 267 274 289 292
2019
255 276 288 294
2020
265 283 292
2021
263 278
2022
271
It can be assumed that claims are fully run off after 4 years. The premiums received for
each year are:
Accident Year Premium
2018
306
2019
312
2020
318
2021
326
2022
330
You do not need to make any allowance for inflation.
1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method.
(b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method.
2. Comment on the differences in the reserves produced by the methods in Part 1.
Please type out answer
Chapter 11 Solutions
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
Ch. 11.1 - Simplify: 2(3 + 2y) 3yCh. 11.1 - Prob. 2LCCh. 11.1 - Solve each of the following systems of equations...Ch. 11.1 - Solve each of the following systems of equations...Ch. 11.1 - Solve each of the following systems of equations...Ch. 11.1 - Solve each of the following systems of equations...Ch. 11.1 - Prob. 5AECh. 11.1 - Solve each of the following systems of equations...Ch. 11.1 - Prob. 7AECh. 11.1 - Solve each of the following systems of equations...
Ch. 11.1 - Prob. 1BECh. 11.1 - Solve each of the following systems of equations....Ch. 11.1 - Prob. 3BECh. 11.1 - Prob. 4BECh. 11.1 - Prob. 5BECh. 11.1 - Solve each of the following systems of equations....Ch. 11.1 - Prob. 7BECh. 11.1 - Prob. 8BECh. 11.1 - Solve each of the following systems of equations....Ch. 11.1 - Prob. 10BECh. 11.1 - Prob. 11BECh. 11.1 - Prob. 12BECh. 11.1 - Prob. 1CECh. 11.1 - Prob. 2CECh. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - Prob. 5CECh. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - Prob. 9CECh. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.1 - Prob. 14CECh. 11.1 - C. Word Problems Translate each problem statement...Ch. 11.2 - True or false: 52 = ( 5)2Ch. 11.2 - Prob. 2LCCh. 11.2 - Which of the following are quadratic equations? 5x...Ch. 11.2 - Which of the following are quadratic equations? 2x...Ch. 11.2 - Which of the following are quadratic equations?...Ch. 11.2 - Prob. 4AECh. 11.2 - Prob. 5AECh. 11.2 - Prob. 6AECh. 11.2 - Prob. 7AECh. 11.2 - Prob. 8AECh. 11.2 - Prob. 9AECh. 11.2 - Prob. 10AECh. 11.2 - Prob. 1BECh. 11.2 - Solve each of these quadratic equations. (Round to...Ch. 11.2 - Solve each of these quadratic equations. (Round to...Ch. 11.2 - Solve each of these quadratic equations. (Round to...Ch. 11.2 - Prob. 5BECh. 11.2 - Prob. 6BECh. 11.2 - Prob. 7BECh. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - Prob. 9BECh. 11.2 - Solve each of these quadratic equations. (Round to...Ch. 11.2 - Solve each of these quadratic equations. (Round to...Ch. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - Prob. 15BECh. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - Prob. 17BECh. 11.2 - Prob. 18BECh. 11.2 - Prob. 19BECh. 11.2 - B. Solve each of these quadratic equations. (Round...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - Prob. 3CECh. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - Prob. 5CECh. 11.2 - Prob. 6CECh. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - Prob. 11CECh. 11.2 - Prob. 12CECh. 11.2 - Prob. 13CECh. 11.2 - Prob. 14CECh. 11.2 - Prob. 15CECh. 11.2 - Prob. 16CECh. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11.2 - C. Practical Applications. (Round to the nearest...Ch. 11 - Solve a system of two linear equations two...Ch. 11 - Prob. 2PCh. 11 - Solve quadratic equations. (a) x2 = 16 (b) x2 7x...Ch. 11 - Prob. 4PCh. 11 - Prob. 1APSCh. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - A. Solve each of the following systems of...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - B. Solve each of the following quadratic...Ch. 11 - Prob. 1CPSCh. 11 - C. Practical Applications The area of a square is...Ch. 11 - Prob. 3CPSCh. 11 - Practical Applications For each of the following,...Ch. 11 - Practical Applications For each of the following,...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - Practical Applications For each of the following,...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - Prob. 12CPSCh. 11 - C. Practical Applications. For each of the...Ch. 11 - For each of the following, set up either a system...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...Ch. 11 - Prob. 19CPSCh. 11 - Prob. 20CPSCh. 11 - C. Practical Applications. For each of the...Ch. 11 - C. Practical Applications. For each of the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The function f(x) = log x is transformed to produce g(x) = log (x) – 3. Identify the type of transformation and describe the change. Please type out answerarrow_forwardEach graph below is the graph of a system of three linear equations in three unknowns of the form Ax = b. Determine whether each system has a solution and, if it does, the number of free variables. A. O free variables ✓ B. no solution C. no solution D. no solution E. 1 free variable F. 1 free variablearrow_forward+ Find the first five non-zero terms of the Taylor series for f(x) = sin(2x) centered at 4π. + + + ...arrow_forward
- + + ... Find the first five non-zero terms of the Taylor series for f(x) centered at x = 4. = 1 x + + +arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forward7. 11 m 12.7 m 14 m S V=B₁+ B2(h) 9.5 m 16 m h+s 2 na 62-19 = 37 +, M h² = Bu-29arrow_forward
- Find the interval and radius of convergence for the given power series. n=0 (− 1)" xn 7" (n² + 2) The series is convergent on the interval: The radius of convergence is R =arrow_forwardFind the interval and radius of convergence for the given power series. n=1 (x-4)" n( - 8)" The series is convergent on the interval: The radius of convergence is R =arrow_forwardFind the interval and radius of convergence for the given power series. n=0 10"x" 7(n!) The series is convergent on the interval: The radius of convergence is R =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning


Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
10 - Roots of polynomials; Author: Technion;https://www.youtube.com/watch?v=88YUeigknNg;License: Standard YouTube License, CC-BY