EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220100257056
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 63P
How does the ideal gas refrigeration cycle differ from the Carnot refrigeration cycle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the temperature of the superheated ammonia vapor exiting the compressor.
An ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the amount of heat rejected in the condenser, kJ/min.
An ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the compressor work, kW.
Chapter 11 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - 11–3 A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - It is proposed to use water instead of...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - The COP of vapor-compression refrigeration cycles...
Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Condensers in these refrigerators are all_______cooled.arrow_forwardAn ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the coefficient of performance.arrow_forwardRefrigerant 22 is the working fluid in a Carnot vapor refrigeration cycle for which the evaporator temperature is -30°C. Saturated vapor enters the condenser at 36°C, and saturated liquid exits at the same temperature. The mass flow rate of refrigerant is 10 kg/min. Determine the quality of refrigerant at inlet of compressor, (A) 0.9430 B 0.6931 C 0.7931 D 0.8931arrow_forward
- Consider a Brayton refrigeration cycle with a regenerative heat exchanger. Air with a volumetric flow rate of 2500 ft³/min enters the compressor at 480°R, 15 lbf/in² and is compressed to 50 lbf/in². Compressed air enters the regenerative heat exchanger at 540°R and is cooled to 480°R before entering the turbine. The compressor and turbine each have isentropic efficiencies of 88%. Step 1 Your Answer Correct Answer (Used) Determine the refrigeration capacity, in tons. Qin = Step 2 B = 15.92 Determine the coefficient of performance. i tonsarrow_forwardConsider a Brayton refrigeration cycle with a regenerative heat exchanger. Air with a volumetric flow rate of 2500 ft³/min enters the compressor at 480°R, 15 lbf/in² and is compressed to 50 lbf/in². Compressed air enters the regenerative heat exchanger at 540°R and is cooled to 480°R before entering the turbine. The compressor and turbine each have isentropic efficiencies of 88% Determine: (a) The refrigerant Mass Flow rate in lb/min (b) Compressor isentropic efficeincy in percent (c) the compressor power in horsepower (d) the coefficient of performancearrow_forwardyou design a custom refrigeration system using 1,1,2-tetrafluoroethane (R-134a) as refrigerant.You design your ideal compression-based refrigeration cycle to operate between 2 bar and 9 bar. Before enteringthe ideal butterfly valve (delta H = 0), the refrigerant is a saturated liquid. Before entering the compressor, therefrigerant is saturated vapor. In fact, in isentropic operation, the refrigerant which leaves the compressor is alsosaturated vapor. The operation of the compressor and the evaporator is isobaric. Assuming a mass flow rate of1.5 kg / s, determine the compressor efficiency required to achieve a coefficient of performance of 6.96. Whatis ?? ̇ et ?? ̇ to this performance.arrow_forward
- What are the four processes that make up the simple ideal vapor compression refrigeration (VCR) cycle? Make sure you mention what is physically happening during each process Themodynamics question. please explain briefly.Thank youarrow_forwardIn an ideal vapour-compression refrigeration cycle, refrigerant R-12 enters the compressor as a saturated vapour at −18 degree C and leaves the condenser as a saturated liquid at 25 degree C. The mass flow rate of the refrigerant is 0.5 kg/s, and the pressure drop in the evaporator and the condenser are negligible. Calculate: a) the refrigeration effect (rate of refrigeration or heat transfer rate in the evaporator) b)power consumed by the compressor c)the coefficient of performance of the refrigerator) d)qualityof the refrigerant after the expansion valve e)heat transfer rate in the condenserarrow_forwardWhy is the reversed Carnot cycle executed within the saturation dome not a realistic model for refrigeration cycles?arrow_forward
- An ideal vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12°C and a condenser pressure of 14 bar. The saturated vapor enters the compressor, and the saturated liquid exits the condenser. The refrigerating capacity is 14 tons. Determine: a) the mass flow rate of the refrigerant, in kg/min.b) the compressor power, in kW.c) the coefficient of performancearrow_forwardAn ideal ammonia (R – 717) vapor-compression refrigeration cycle has an evaporator temperature of –20 C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3 kg/min. Determine the refrigerating capacity, in tons of refrigeration.arrow_forwardRefrigerant 22 is the working fluid in a Carnot vapor refrigeration cycle for which the evaporator temperature is -30°C. Saturated vapor enters the condenser at 36°C, and saturated liquid exits at the same temperature. The mass flow rate of refrigerant is 10 kg/min. Determine the power input to the compressor, in kW,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY