THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1.11, Problem 64P
Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa, determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury (ρ = 13,600 kg/m3) or (b) water (ρ = 1000 kg/m3).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa, determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury (ρ = 13,600 kg/m3 ) or (b) water (ρ = 1000 kg/m3 ).
A simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its
left limb is open to the atmosphere and the right limb is connected to the pipe. The center of
the pipe is 57 mm below the level of mercury in the left limb. If the difference of mercury
level in the two limbs is 134 mm, determine the gauge pressure of the oil in the pipe in
Pascal. The specific gravity of the oil & mercury is 0.7 and 13.6 respectively.
Solution:
(1) Density of oil in kg/m3
(ii) Density of mercury in kg/m3
(iii) Height of the Oil in the right limb (in meters of oil) h;
(iv) The gauge pressure of the oil in the pipe in (in Pascal)
Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 100 kPa, determine the distance between the two fluid levels of the manometer if the fluid is
Chapter 1 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - 1–5C What is the difference between kg-mass and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - 1–8 At 45° latitude, the gravitational...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...
Ch. 1.11 - Prob. 11PCh. 1.11 - Prob. 12PCh. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - Prob. 17PCh. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - Prob. 19PCh. 1.11 - 1–20C A can or soft drink at room temperature is...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - Prob. 27PCh. 1.11 - Prob. 28PCh. 1.11 - 1–29C What is specific gravity? How is it related...Ch. 1.11 - 1–31C What are the ordinary and absolute...Ch. 1.11 - Prob. 32PCh. 1.11 - Prob. 33PCh. 1.11 - Prob. 34PCh. 1.11 - Prob. 35PCh. 1.11 - Prob. 36PCh. 1.11 - Prob. 37PCh. 1.11 - Prob. 38PCh. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - 1–43C Express Pascal’s law, and give a real-world...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - Prob. 46PCh. 1.11 - 1–47E The pressure in a water line is 1500 kPa....Ch. 1.11 - 1–48E If the pressure inside a rubber balloon is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - 1–50 The water in a tank is pressurized by air,...Ch. 1.11 - 1–51 Determine the atmospheric pressure at a...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - 1–55E Determine the pressure exerted on the...Ch. 1.11 - 1–56 Consider a 70-kg woman who has a total foot...Ch. 1.11 - Prob. 57PCh. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - Prob. 61PCh. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Prob. 73PCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Prob. 76PCh. 1.11 - Prob. 77PCh. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - Prob. 92RPCh. 1.11 - Prob. 93RPCh. 1.11 - Prob. 94RPCh. 1.11 - Prob. 95RPCh. 1.11 - Prob. 96RPCh. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - Prob. 108RPCh. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Prob. 110RPCh. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Prob. 115RPCh. 1.11 - Prob. 116RPCh. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
19.8 Calculate the allowable tensile load for the connection shown. The plates are ASTM A36 steel and the weld ...
Applied Statics and Strength of Materials (6th Edition)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
Three rigid bodies, 2,3, and 4, are connected by four springs as shown in the figure. A horizontal force of 1,0...
Introduction To Finite Element Analysis And Design
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
Convert the following quantities from English to SI units: a. 98 Btu/(hr-ft-F) b. 0.24 Btu/(lbm-F) C. 0.04 Ibm/...
Heating Ventilating and Air Conditioning: Analysis and Design
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 65 kPa, determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury SG = 13.6or (b) water P = 65 kPa Gas h = ?arrow_forwardA simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its left limb is open to the atmosphere and the right limb is connected to the pipe. The center of the pipe is 73 mm below the level of mercury in the left limb. If the difference of mercury level in the two limbs is 127 mm, determine the gauge pressure of the oil in the pipe in Pascal. The specific gravity of the oil & mercury is 0.84 and 13.6 respectively. Solution: (i) Density of oil in kg/m3 (ii) Density of mercury in kg/m (iii) Height of the Oil in the right limb (in meters of oil) h1 (iv) The gauge pressure of the oil in the pipe in (in Pascal)arrow_forwardThe water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown. Determine the gage pressure of air in the tank if h1 = 16”, h2 = 24”, and h3 = 30”. Take the densities of water, oil, and mercury to be 1.94, 1.65 and 26.39 slugs/ft^3, respectivelyarrow_forward
- A simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its left limb is open to the atmosphere and the right limb is connected to the pipe. The center of the pipe is 164 mm below the level of mercury in the left limb. If the difference of mercury level in the two limbs is 232 mm, determine the gauge pressure of the oil in the pipe in Pascal. The specific gravity of the oil & mercury is 1.76 and 13.6 respectively. (i) Density of oil in kg/m3 (ii) Density of mercury in kg/m3 (iii) Height of the Oil in the right limb (in meters of oil) h1 (iv) The gauge pressure of the oil in the pipe in (in Pascal) Answer for part 4arrow_forwardA simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its left limb is open to the atmosphere and the right limb is connected to the pipe. The center of the pipe is 63 mm below the level of mercury in the left limb. If the difference of mercury level in the two limbs is 140 mm, determine the gauge pressure of the oil in the pipe in Pascal. The specific gravity of the oil & mercury is 0.79 and 13.6 respectively. Solution: ) Density of oil in kg/m³ (ii) Density of mercury in kg/m3 (ii) Height of the Oil in the right limb (in meters of oil) h; (iv) The gauge pressure of the oil in the pipe in (in Pascal)arrow_forwardA simple U tube manometer is used to measure the pressure of oil flowing in a pipeline. Its left limb is open to the atmosphere and the right limb is connected to the pipe. The center of the pipe is 66 mm below the level of mercury in the left limb. If the difference of mercury level in the two limbs is 136 mm, determine the gauge pressure of the oil in the pipe in Pascal. The specific gravity of the oil & mercury is 0.75 and 13.6 respectively. Solution: (i) Density of oil in kg/m3 Answer for part 1 (ii) Density of mercury in kg/m3 Answer for part 2 (iii) Height of the Oil in the right limb (in meters of oil) h1 Answer for part 3 (iv) The gauge pressure of the oil in the pipe in (in Pascal)arrow_forward
- The pressure in the pressurized water tank is measured by a multi-fluid manometer with one end open to the atmosphere. Determine the absolute pressure of air in the tank (pressure at point 1) assuming that the air pressure is uniform. The densities of mercury, water and oil are 13,600 kgm/m3, 1000 kgm/m3, 850 kgm/m3 ,respectively. h1= 25cm, h2=35 cm and h3=50 cm.arrow_forwardPravinbhaiarrow_forwardBoth a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa, determine the distance between the 2 fluid levels of the manometer if the fluid is a) Mercury (p = 13,600 kg/m3) Answer: h = 0.60 m b) Water (p = 1,000 kg/m³) Answer: h = 8.16 m P= 80 kPa Gas h= ? 1-63arrow_forward
- Both a gauge and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gauge is 80 GN/mm². Determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury and (b) water. Justify the comment on the height level of each fluid.arrow_forwardThe water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown in Fig. The tank is located on a mountain at an altitude of 1500 m where the atmospheric pressure is 75.6 kPa. Determine the air pressure in the tank if h1 =50.1 m, h2 =5 0.2 m, and h3 =5 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, 900 kg/m3, and 13,600 kg/m3 respectively.arrow_forwardBoth a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa, determine the distance between the two fluid levels of the manometer if the fluid is: a. Mercury (S.G. = 13.6) b. Sea water (S.G. = 1.06arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY