
Calculus For The Life Sciences
2nd Edition
ISBN: 9780321964038
Author: GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher: Pearson Addison Wesley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11.1, Problem 29E
Find the particular solution for each initial value problem.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3.15 (B). A beam ABCD is simply supported at B and C with ABCD=2m; BC 4 m. It
carries a point load of 60 KN at the free end A, a Uniformly distributed load of 60
KN/m between B and C and an anticlockwise moment of 80 KN m in the plane of
the beam applied at the free end D. Sketch and dimension the S.F. and B.M.
diagrams, and determine the position and magnitude of the maximum bending
moment. CEL.E.] CS.F. 60, 170, 70KN, B.M. 120, +120.1, +80 kNm, 120.1 kNm at 2.83 m to
right of 8.7
7.1 (A/B). A Uniform I-section beam has flanges 150 mm wide by 8 mm thick and a
web 180 mm wide and 8 mm thick. At a certain section there is a shearing force of
120 KN. Draw a diagram to illustrate the distribution of shear stress across the
section as a result of bending. What is the maximum shear stress? [86.7 MN/m².
1. Let Ả = −2x + 3y+42, B =
-
-
7x +lý +22, and C = −1x + 2y +
42. Find (a) Ả X B (b) ẢX B°C c)
→→
Ả B X C d) ẢB°C e) ẢX B XC.
Chapter 11 Solutions
Calculus For The Life Sciences
Ch. 11.1 - YOUR TURN 1 Find all solutions of the differential...Ch. 11.1 - Prob. 2YTCh. 11.1 - Prob. 3YTCh. 11.1 - YOUR TURN In Example 6, find the goat population...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Prob. 2ECh. 11.1 - Find the general solution for each differential...Ch. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6E
Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Prob. 10ECh. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the general solution for each differential...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Prob. 20ECh. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Find the particular solution for each initial...Ch. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Prob. 40ECh. 11.1 - Suppose that 0y0N. Let b=(Ny0)y0, and let...Ch. 11.1 - Prob. 42ECh. 11.1 - Tracer Dye The amount of a tracer dye injected...Ch. 11.1 - Soil Moisture The evapotranspiration index I is a...Ch. 11.1 - Fish Population An Isolated fish population is...Ch. 11.1 - Dieting A persons weight depends both on the daily...Ch. 11.1 - Refer to Exercise 46. Suppose someone initially...Ch. 11.1 - U.S. Hispanic Population A recent report by the...Ch. 11.1 - U.S Asian Population Refer to Exercise 50. The...Ch. 11.1 - Guernsey Growth The growth of Guernsey cows can be...Ch. 11.1 - Flea Beetles A study of flea beetles found that...Ch. 11.1 - Plant Growth Researchers have found that the...Ch. 11.1 - Spread of a Rumor Suppose the rate at which a...Ch. 11.1 - Radioactive Decay The amount of a radioactive...Ch. 11.1 - Newtons Law of Cooling Newtons law of cooling...Ch. 11.1 - According to the solution in Exercise 58 of the...Ch. 11.1 - Newtons Law of Cooling When a dead body is...Ch. 11.1 - Prob. 61ECh. 11.2 - Prob. 1YTCh. 11.2 - YOUR TURN Solve the initial value problem...Ch. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - Prob. 10ECh. 11.2 - EXERCISES Find the general solution for each...Ch. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Prob. 14ECh. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - EXERCISES Solve each differential equation,...Ch. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 29ECh. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Prob. 32ECh. 11.2 - Prob. 33ECh. 11.3 - Use Eulers method to approximate the solution of...Ch. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Prob. 6ECh. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Prob. 16ECh. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Use Eulers method to approximate the indicated...Ch. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Solve each differential equation and graph the...Ch. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 31ECh. 11.3 - Immigration An island is colonized by immigration...Ch. 11.3 - Insect Population A population of insects y,...Ch. 11.3 - Whale Population Under certain conditions a...Ch. 11.3 - Goat Growth The growth of male Saanen goats can be...Ch. 11.3 - Spread of Rumors A rumor spreads through a...Ch. 11.4 - For Exercises 1-8, solve the system of...Ch. 11.4 - For Exercise 1-8, solve the system of differential...Ch. 11.4 - For Exercises 1-8, solve the system of...Ch. 11.4 - For Exercises 1-8, solve the system of...Ch. 11.4 - For Exercises 1-8, solve the system of...Ch. 11.4 - For Exercises 1-8, solve the system of...Ch. 11.4 - For Exercise 9-14, find the particular solution...Ch. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - For Exercise 9-14, find the particular solution...Ch. 11.5 - YOUR TURN Consider the system of differential...Ch. 11.5 - YOUR TURN Letting p=4,q=1,r=3,ands=5 in Example 2,...Ch. 11.5 - Prob. 9ECh. 11.5 - Whales and Krill For the system of differential...Ch. 11.5 - Prob. 12ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.6 - YOUR TURN 1 Suppose that an epidemic in a...Ch. 11.6 - Prob. 2YTCh. 11.6 - Spread of an Epidemic The native Hawaiians lived...Ch. 11.6 - Prob. 3ECh. 11.6 - Prob. 4ECh. 11.6 - Prob. 5ECh. 11.6 - Prob. 6ECh. 11.6 - Prob. 7ECh. 11.6 - Prob. 8ECh. 11.6 - Solve Exercise 10 if pure water is added instead...Ch. 11.6 - Prob. 14ECh. 11.6 - Solve Exercise 14 if a 25 solution of the same...Ch. 11.6 - Prob. 16ECh. 11.CR - Prob. 1CRCh. 11.CR - Prob. 2CRCh. 11.CR - Prob. 3CRCh. 11.CR - Prob. 4CRCh. 11.CR - Prob. 5CRCh. 11.CR - Prob. 6CRCh. 11.CR - Prob. 7CRCh. 11.CR - Prob. 8CRCh. 11.CR - Prob. 9CRCh. 11.CR - Prob. 10CRCh. 11.CR - Prob. 11CRCh. 11.CR - Prob. 12CRCh. 11.CR - Prob. 13CRCh. 11.CR - Prob. 14CRCh. 11.CR - Prob. 15CRCh. 11.CR - Prob. 16CRCh. 11.CR - Prob. 17CRCh. 11.CR - Prob. 18CRCh. 11.CR - Prob. 19CRCh. 11.CR - Classify each equation as separable, linear, both...Ch. 11.CR - Prob. 21CRCh. 11.CR - Prob. 22CRCh. 11.CR - Prob. 23CRCh. 11.CR - Prob. 24CRCh. 11.CR - Prob. 25CRCh. 11.CR - Prob. 26CRCh. 11.CR - Prob. 27CRCh. 11.CR - Prob. 28CRCh. 11.CR - Prob. 29CRCh. 11.CR - Prob. 30CRCh. 11.CR - Prob. 31CRCh. 11.CR - Prob. 32CRCh. 11.CR - Prob. 33CRCh. 11.CR - Prob. 34CRCh. 11.CR - Prob. 35CRCh. 11.CR - Prob. 36CRCh. 11.CR - Prob. 37CRCh. 11.CR - Prob. 38CRCh. 11.CR - Prob. 39CRCh. 11.CR - Prob. 40CRCh. 11.CR - Prob. 41CRCh. 11.CR - Prob. 42CRCh. 11.CR - Prob. 43CRCh. 11.CR - Prob. 44CRCh. 11.CR - Prob. 45CRCh. 11.CR - Prob. 46CRCh. 11.CR - Prob. 47CRCh. 11.CR - Prob. 48CRCh. 11.CR - Prob. 49CRCh. 11.CR - Prob. 50CRCh. 11.CR - Prob. 51CRCh. 11.CR - Prob. 52CRCh. 11.CR - Solve each of the following systems of...Ch. 11.CR - Prob. 54CRCh. 11.CR - Effect of Insecticide After use of an experimental...Ch. 11.CR - Growth of a Mite Population A population of mites...Ch. 11.CR - Prob. 60CRCh. 11.CR - Prob. 61CRCh. 11.CR - Prob. 68CRCh. 11.CR - Prob. 69CRCh. 11.CR - Prob. 70CRCh. 11.CR - Prob. 71CRCh. 11.EA - Prob. 1EACh. 11.EA - Prob. 2EACh. 11.EA - Prob. 3EACh. 11.EA - Prob. 5EACh. 11.EA - Prob. 7EACh. 11.EA - Prob. 8EA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 3.13 (B). A beam ABC, 6 m long, is simply-supported at the left-hand end A and at B I'm from the right-hand end C. The beam is of weight 100 N/metre run. (a) Determine the reactions at A and B. (b) Construct to scales of 20 mm = 1 m and 20 mm = 100 N, the shearing-force diagram for the beam, indicating thereon the principal values. (c) Determine the magnitude and position of the maximum bending moment. (You may, if you so wish, deduce the answers from the shearing force diagram without constructing a full or partial bending-moment diagram.) [C.G.] C240 N, 360 N, 288 Nm, 2.4 m from A.]arrow_forward5. Using parentheses make sense of the expression V · VXVV · Å where Ả = Ã(x, y, z). Is the result a vector or a scaler?arrow_forward3.10 (A/B). A beam ABCDE is simply supported at A and D. It carries the following loading: a distributed load of 30 kN/m between A and B, a concentrated load of 20 KN at B, a concentrated load of 20 KN at C, a concentrated load of 10 KN at E; a distributed load of 60 kN/m between 0 and E. Span AB = 1.5 BC = CD = DE 1 m. Calculate the value of the reactions at A and D and hence draw the S.F. and B.M. diagrams. What are the magnitude and position of the maximum B.M. on the beam? [41.1, 113.9 KN, 28.15 kNm; 1.37 m from A.J m,arrow_forward
- 3.14 (B). A beam ABCD, 6 m long, is simply-supported at the right-hand end and at a point B Im from the left-hand end A. It carries a vertical load of 10 KN at A, a second concentrated load of 20 KN at C, 3 m from D, and a uniformly distributed load of 10 kN/m between C and D. Determine: (a) the values of the reactions at B and 0, (6) the position and magnitude of the maximum bending moment. [33 KN, 27 KN, 2.7 m from D, 36.45k Nm.]arrow_forward3.17 (B). A simply supported beam has a span of 6 m and carries a distributed load which varies in a linea manner from 30 kN/m at one support to 90 kN/m at the other support. Locate the point of maximum bendin moment and calculate the value of this maximum. Sketch the S.F. and B.M. diagrams. [U.L.] [3.25 m from l.h. end; 272 KN m 30. 90arrow_forward3.11 (B). A beam, 12 m long, is to be simply supported at 2m from each end and to carry a U.d.l of 30kN/m together with a 30 KN point load at the right-hand end. For ease of transportation the beam is to be jointed in two places, one joint being Situated 5 m from the left-hand end. What load (to the nearest KN) must be applied to the left-hand end to ensure that there is no B.M. at the joint (i.e. the joint is to be a point of contraflexure)? What will then be the best position on the beam for the other joint? Determine the position and magnitude of the maximum B.M. present on the beam. [114 KN, 1.6 m from r.h. reaction; 4.7 m from 1.h. reaction; 43.35 KN m.]arrow_forward
- 2. Using vector algebraic operations, if - Ả = 2ây – mây – C - B = mây tây – 2, C = ây + mây + 20, D = m x + mây tậ Z Find the value(s) of m such that (a) Ả is perpendicular to B (b) B is parallel to Carrow_forward1. Determine whether the following sets are subspaces of $\mathbb{R}^3$ under the operations of addition and scalar multiplication defined on $\mathbb{R}^3$. Justify your answers.(a) $W_1=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=3 a_2\right.$ and $\left.a_3=\mid a_2\right\}$(b) $W_2=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=a_3+2\right\}$(c) $W_3=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 2 a_1-7 a_2+a_3=0\right\}$(d) $W_4=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1-4 a_2-a_3=0\right\}$(e) $W_s=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1+2 a_2-3 a_3=1\right\}$(f) $W_6=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 5 a_1^2-3 a_2^2+6 a_3^2=0\right\}$arrow_forward3 Evaluate the double integral 10 y√x dy dx. First sketch the area of the integral involved, then carry out the integral in both ways, first over x and next over y, and vice versa.arrow_forward
- Question 2. i. Suppose that the random variable X takes two possible values 1 and -1, and P(X = 1) = P(X-1)=1/2. Let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer. ii. Suppose that the random variable X~N(0, 1), let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer.arrow_forwardProblem 4. Let f(x, y) = { Find P(X <1/2|Y = 1/2). c(x + y²) 0arrow_forwardQize f(x) x + 2x2 - 2 x² + 4x² - 4 Solve the equation using Newton Raphsonarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage


Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY