Muscle contraction. In a study of the speed of muscle contraction in frogs under various loads, British biophysicist A. W. Hill determined that the weight w (in grams) placed on the muscle and the speed of contraction v (in centimeters per second) are approximately related by an equation of the form ( w + a ) ( v + b ) = c where a , b , and c are constants. Suppose that for a certain muscle, a = 15, b = 1, and c = 90. Express v as a function of w . Find the speed of contraction if a weight of 16 g is placed on the muscle.
Muscle contraction. In a study of the speed of muscle contraction in frogs under various loads, British biophysicist A. W. Hill determined that the weight w (in grams) placed on the muscle and the speed of contraction v (in centimeters per second) are approximately related by an equation of the form ( w + a ) ( v + b ) = c where a , b , and c are constants. Suppose that for a certain muscle, a = 15, b = 1, and c = 90. Express v as a function of w . Find the speed of contraction if a weight of 16 g is placed on the muscle.
Solution Summary: The author explains how to express the speed of contraction v as a function of weight w.
Muscle contraction. In a study of the speed of muscle contraction in frogs under various loads, British biophysicist A. W. Hill determined that the weight w (in grams) placed on the muscle and the speed of contraction v (in centimeters per second) are approximately related by an equation of the form
(
w
+
a
)
(
v
+
b
)
=
c
where a, b, and c are constants. Suppose that for a certain muscle, a = 15, b = 1, and c = 90. Express v as a function of w. Find the speed of contraction if a weight of 16 g is placed on the muscle.
You may need to use the appropriate appendix table or technology to answer this question.
You are given the following information obtained from a random sample of 4 observations.
24
48
31
57
You want to determine whether or not the mean of the population from which this sample was taken is significantly different from 49. (Assume the population is normally distributed.)
(a)
State the null and the alternative hypotheses. (Enter != for ≠ as needed.)
H0:
Ha:
(b)
Determine the test statistic. (Round your answer to three decimal places.)
(c)
Determine the p-value, and at the 5% level of significance, test to determine whether or not the mean of the population is significantly different from 49.
Find the p-value. (Round your answer to four decimal places.)
p-value =
State your conclusion.
Reject H0. There is insufficient evidence to conclude that the mean of the population is different from 49.Do not reject H0. There is sufficient evidence to conclude that the…
Chapter 1 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY