Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 79EAP
A 1000 kg cart is rolling to the right at 5.0 m/s. A 70 kg man is standing on the right end of the cart. What is the speed of the cart if the man suddenly starts running to the left with a speed of 10 m/s relative to the cart?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 11 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - \A 2 kg object is moving to the right with a speed...Ch. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Angie, Brad, and Carlos are discussing a physics...Ch. 11 - Prob. 7CQCh. 11 - Automobiles are designed with “crumple zones”...Ch. 11 - A golf club continues forward after hitting the...Ch. 11 - Suppose a rubber ball collides head-on with a more...
Ch. 11 - Two particles collide, one of which was initially...Ch. 11 - Two ice skaters, Paula and Ricardo, push off from...Ch. 11 - Prob. 13CQCh. 11 - At what speed do a bicycle and its rider, with a...Ch. 11 - What is the magnitude of the momentum of A 3000 kg...Ch. 11 - What impulse does the force shown in FIGURE EX11.3...Ch. 11 - What is the impulse on a 3.0 kg particle that...Ch. 11 - Prob. 5EAPCh. 11 - Prob. 6EAPCh. 11 - Prob. 7EAPCh. 11 - Prob. 8EAPCh. 11 - Prob. 9EAPCh. 11 - A sled slides along a horizontal surface on which...Ch. 11 - Prob. 11EAPCh. 11 - A g air-track glider collides with a spring at one...Ch. 11 - A 250 g ball collides with a wall. FIGURE EX11.13...Ch. 11 - A 5000 kg open train car is rolling on...Ch. 11 - Prob. 15EAPCh. 11 - Prob. 16EAPCh. 11 - Three identical train cars, coupled together, are...Ch. 11 - A 300 g bird flying along at 6.0 m/s sees a 10 g...Ch. 11 - Prob. 19EAPCh. 11 - A 1500 kg car is rolling at 2.0 m/s. You would...Ch. 11 - Prob. 21EAPCh. 11 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 11 - A proton is traveling to the right at 2.0 × 107...Ch. 11 - Prob. 24EAPCh. 11 - Prob. 25EAPCh. 11 - Prob. 26EAPCh. 11 - Prob. 27EAPCh. 11 - Prob. 28EAPCh. 11 - Prob. 29EAPCh. 11 - Prob. 30EAPCh. 11 - Two particles collide and bounce apart. FIGURE...Ch. 11 - An object at rest explodes into three fragments....Ch. 11 - A 20 g ball of clay traveling east at 3.0 m/s...Ch. 11 - 34. At the center of a 50-m-diameter circular ice...Ch. 11 - A small rocket with 15 kN thrust burns 250 kg of...Ch. 11 - A rocket in deep space has an empty mass of 150 kg...Ch. 11 - A rocket in deep space has an exhaust-gas speed of...Ch. 11 - A tennis player swings her 1000 g racket with a...Ch. 11 - A 60 g tennis ball with an initial speed of 32 m/s...Ch. 11 - A 500 g cart is released from rest 1.00 m from the...Ch. 11 - A 200 g ball is dropped from a height of 2.0 m,...Ch. 11 - The flowers of the bunchberry plant open with...Ch. 11 - A particle of mass in is at rest at t = 0. Its...Ch. 11 - Air-track gliders with masses 300 g, 400 g, and...Ch. 11 - Most geologists believe that the dinosaurs became...Ch. 11 - Squids rely on jet propulsion to move around. A...Ch. 11 - A firecracker in a coconut blows the coconut into...Ch. 11 - One billiard ball is shot east at 2.0 m/s. A...Ch. 11 - a. A bullet of mass m is fired into a block of...Ch. 11 - Prob. 50EAPCh. 11 - An object at rest on a flat, horizontal surface...Ch. 11 - A 1500 kg weather rocket accelerates upward at 10...Ch. 11 - Prob. 53EAPCh. 11 - Two 5 g blocks of wood are 2.0 m apart on a...Ch. 11 - A 100 g granite cube slides down a 40°...Ch. 11 - You have been asked to design a “ballistic spring...Ch. 11 - In FIGUREP11.57, a block of mass m slides along a...Ch. 11 - The stoplight had just changed and a 2000 kg...Ch. 11 - Prob. 59EAPCh. 11 - Force Fx= (10 N) sin (2pt/4.0 s) is exerted on a...Ch. 11 - A 500 g particle has velocity vx=5.0 m/s at t = 2...Ch. 11 - 30 ton rail car and a 90 ton rail car, initially...Ch. 11 - Prob. 63EAPCh. 11 - Prob. 64EAPCh. 11 - Prob. 65EAPCh. 11 - Old naval ships fired 10 kg cannon balls from a...Ch. 11 - A proton (mass 1 u) is shot toward an unknown...Ch. 11 - The nucleus of the polonium isotope 214Po (mass...Ch. 11 - Prob. 69EAPCh. 11 - A 20 g ball of clay traveling east at 2.0 m/s...Ch. 11 - Prob. 71EAPCh. 11 - Prob. 72EAPCh. 11 - Prob. 73EAPCh. 11 - a. To understand why rockets often have multiple...Ch. 11 - Prob. 75EAPCh. 11 - Prob. 76EAPCh. 11 - Prob. 77EAPCh. 11 - In Problems 75 through 78 you are given the...Ch. 11 - A 1000 kg cart is rolling to the right at 5.0 m/s....Ch. 11 - Prob. 80EAPCh. 11 - Prob. 81EAPCh. 11 - A two-stage rocket is traveling at 1200 m/s with...Ch. 11 - 83. The air-track carts in FIGURE P11.83 are...Ch. 11 - Section 11.6 found an equation for vmaxof a rocket...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY