Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 69E
Interpretation Introduction
To determine:
The mass of hydrogen gas collected
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
One method of analyzing amino acids is the van Slyke method. The characteristic amino groups (−NH2) in protein material are allowed to react with nitrous acid, HNO2, to form N2 gas. From the volume of the gas, theamount of amino acid can be determined. A 0.0604-g sample of a biological sample containing glycine, CH2(NH2)COOH, was analyzed by the van Slyke method and yielded 3.70 mL of N2 collected over water at a pressure of 735 torr and 29 °C. What was the percentage of glycine in the sample?CH2(NH2)CO2 H+HNO2 ⟶CH2 (OH)CO2 H+H2O+N2
2. Hydrochloric acid (HCI) can dissolve solid iron according to the following reaction:
Fe (s) + 2 HCI (aq) → FeCl2 (aq) + H2 (g)
a) How many moles of HCl are needed to completely dissolve a 210 g iron bar?
b) What volume of H2 gas will be produced by the complete reaction of the iron bar?
Assume STP.
Solid ammonium chloride, NH Cl, is formed by the reaction of gaseous ammonia, NH,, and hydrogen chloride, HCl.
3)
NH, (g) + HC1(g) → NH,C1(s)
A 6.05 g sample of NH, gas and a 6.05 g sample of HCl gas are mixed in a 1.00 L flask at 25 °C.
Identify the limiting reagent.
O NH,CI
О НСI
O NH,
How many grams of NH, Cl will be formed by this reaction?
mass:
What is the pressure in atmospheres of the gas remaining in the flask? Ignore the volume of solid NH,Cl produced by
the reaction.
atm
Chapter 11 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 11 - Prob. 1SAQCh. 11 - Prob. 2SAQCh. 11 - Prob. 3SAQCh. 11 - Prob. 4SAQCh. 11 - Prob. 5SAQCh. 11 - Prob. 6SAQCh. 11 - Prob. 7SAQCh. 11 - A gas mixture is a 1.55-L container at 298 K...Ch. 11 - Prob. 9SAQCh. 11 - Prob. 10SAQ
Ch. 11 - Prob. 11SAQCh. 11 - Prob. 12SAQCh. 11 - Prob. 13SAQCh. 11 - Prob. 14SAQCh. 11 - Prob. 15SAQCh. 11 - Prob. 1ECh. 11 - Prob. 2ECh. 11 - Prob. 3ECh. 11 - Prob. 4ECh. 11 - Prob. 5ECh. 11 - Prob. 6ECh. 11 - Prob. 7ECh. 11 - Prob. 8ECh. 11 - Prob. 9ECh. 11 - Prob. 10ECh. 11 - Prob. 11ECh. 11 - Prob. 12ECh. 11 - Prob. 13ECh. 11 - Prob. 14ECh. 11 - Prob. 15ECh. 11 - Prob. 16ECh. 11 - Prob. 17ECh. 11 - Prob. 18ECh. 11 - Prob. 19ECh. 11 - Prob. 20ECh. 11 - Prob. 21ECh. 11 - Prob. 22ECh. 11 - If a reaction occurs in the gas phase at STP, the...Ch. 11 - Prob. 24ECh. 11 - Prob. 25ECh. 11 - Prob. 26ECh. 11 - Prob. 27ECh. 11 - Prob. 28ECh. 11 - Prob. 29ECh. 11 - Prob. 30ECh. 11 - Prob. 31ECh. 11 - Prob. 32ECh. 11 - A 48.3-mL sample of gas in a cylinder is warmed...Ch. 11 - A syringe containing 1.55 mL of oxygen gas is...Ch. 11 - A balloon contains 0.158 mol of gas and has a...Ch. 11 - Prob. 36ECh. 11 - Prob. 37ECh. 11 - Prob. 38ECh. 11 - Prob. 39ECh. 11 - Prob. 40ECh. 11 - Prob. 41ECh. 11 - Prob. 42ECh. 11 - Prob. 43ECh. 11 - Prob. 44ECh. 11 - Prob. 45ECh. 11 - Prob. 46ECh. 11 - A wine-dispensing system uses argon canisters to...Ch. 11 - Prob. 48ECh. 11 - Prob. 49ECh. 11 - Prob. 50ECh. 11 - Aerosol cans carry clear warnings against...Ch. 11 - Prob. 52ECh. 11 - Prob. 53ECh. 11 - Use the molar volume of a gas at STP to calculate...Ch. 11 - What is the density (in g/L) of hydrogen gas at...Ch. 11 - Prob. 56ECh. 11 - Prob. 57ECh. 11 - A 113-mL gas sample has a mass of 0.171 g at a...Ch. 11 - A sample of gas has a mass of 38.8 mg. Its volume...Ch. 11 - Prob. 60ECh. 11 - A gas mixture contains each of these gases at the...Ch. 11 - A gas mixture with a total pressure of 745 mmHg...Ch. 11 - We add a 1.20-g sample of dry ice to a 755-mL...Ch. 11 - A 275-mL flask contains pure helium at a pressure...Ch. 11 - A gas mixture contains 1.25 g N2 and 0.85 g O2 in...Ch. 11 - Prob. 66ECh. 11 - The hydrogen gas formed in a chemical reaction is...Ch. 11 - Prob. 68ECh. 11 - Prob. 69ECh. 11 - Prob. 70ECh. 11 - Prob. 71ECh. 11 - Prob. 72ECh. 11 - Prob. 73ECh. 11 - Prob. 74ECh. 11 - Prob. 75ECh. 11 - Prob. 76ECh. 11 - Prob. 77ECh. 11 - Prob. 78ECh. 11 - Prob. 79ECh. 11 - Prob. 80ECh. 11 - Prob. 81ECh. 11 - Prob. 82ECh. 11 - CH3OH can be synthesized by the reaction:...Ch. 11 - Oxygen gas reacts with powered aluminum according...Ch. 11 - Automobile airbags inflate following serious...Ch. 11 - Lithium reacts with nitrogen gas according to the...Ch. 11 - Prob. 87ECh. 11 - Prob. 88ECh. 11 - Prob. 89ECh. 11 - Carbon monoxide gas reacts with hydrogen gas to...Ch. 11 - Prob. 91ECh. 11 - Prob. 92ECh. 11 - Prob. 93ECh. 11 - Use the vander Waals equation and the ideal gas...Ch. 11 - Pennies that are currently being minted are...Ch. 11 - A 2.85 g sample of an unknown chlorofluorocarbon...Ch. 11 - Prob. 97ECh. 11 - A 118 mL flask is evacuated and found to have a...Ch. 11 - Prob. 99ECh. 11 - A gaseous hydrogen- and carbon-containing compound...Ch. 11 - Prob. 101ECh. 11 - Consider the reaction: 2Ag2O(s)4Ag(s)+O2(g) If...Ch. 11 - When hydrochloric acid is poured over potassium...Ch. 11 - Consider the reaction: 2SO2(g)+O2(g)2SO(g)3 If...Ch. 11 - Ammonium carbonate decomposes upon heating...Ch. 11 - Ammonium nitrate decomposes explosively upon...Ch. 11 - Prob. 107ECh. 11 - Prob. 108ECh. 11 - Gaseous ammonia is injected into the exhaust...Ch. 11 - Prob. 110ECh. 11 - Prob. 111ECh. 11 - Prob. 112ECh. 11 - Prob. 113ECh. 11 - Prob. 114ECh. 11 - Prob. 115ECh. 11 - Prob. 116ECh. 11 - Prob. 117ECh. 11 - Prob. 118ECh. 11 - Prob. 119ECh. 11 - Prob. 120ECh. 11 - Prob. 121ECh. 11 - Prob. 122ECh. 11 - Prob. 123ECh. 11 - Prob. 124ECh. 11 - Prob. 125ECh. 11 - Prob. 126ECh. 11 - When 0.583 g of neon is added to an 800-cm3bulb...Ch. 11 - A gas mixture composed of helium and argon has a...Ch. 11 - Prob. 129ECh. 11 - Prob. 130ECh. 11 - Prob. 131ECh. 11 - Prob. 132ECh. 11 - Prob. 133ECh. 11 - Prob. 134ECh. 11 - The atmosphere slowly oxidizes hydrocarbons in a...Ch. 11 - Prob. 136ECh. 11 - Prob. 137ECh. 11 - Prob. 138ECh. 11 - Prob. 139ECh. 11 - Prob. 140ECh. 11 - Prob. 141ECh. 11 - Prob. 142ECh. 11 - Prob. 143ECh. 11 - Which gas would you expect to deviate most from...Ch. 11 - Prob. 145ECh. 11 - Prob. 146ECh. 11 - Prob. 147E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- If an electric current is passed through molten sodium chloride, elemental chlorine gas is generated as the sodium chloride is decomposed. :math>2NaCl(1)2Na(s)+Cl2(g) at volume of chlorine gas measured at 767 mm Hg at 25 °C would be generated by complete decomposition of 1.25 g of NaCl?arrow_forward28. A neutralization reaction occurs when 120.00 mL of 0.500 mol/L LiOH and 160.00 mL of 0.375 mol/L HNO3(aq) are mixed in an insulated cup. Initially, the solutions are at the same temperature. If the highest temperature reached during mixing was 24.5°C, what was the initial temperature of the solutions? LiOH(aq) + HNO3(aq) →→→ LINO3(aq) + H₂O(l) + 53.1 kJ Assume that both of these solutions have a density of 1.00 g/mL and a specific heat capacity of 4.19 J/g.°C.arrow_forwardIn the reaction of sodium phosphate with aluminum nitrate, 65 ml of 0.125 mol/L sodium phosphate is reacted with 0.255 mol/L aluminum nitrate. What is the minimum volume of aluminum nitrate needed to remove all phosphate ions from the solution? 1. 31.9 ml 2. 63.8 ml 3. 16 ml 4. 95.7 ml 5. 10.6 mlarrow_forward
- Mg(s) + 2 HCl(aq) → MgCl2(aq) + H2(g) This reaction uses two reactants. Which of the reactants is in the form of a solution?arrow_forwardThe atmosphere contains 78% N2(g), 21% O2(g), and traces of other gases. These gases react at high temperature to form nitrogen monoxide, an important pollutant. N2(g) + O2(g) = 2NO (g) For this reaction at a certain temperature, Kc = 3.8 x 10^-5. If the initial concentration of N2(g) is 0.78 mol/L, and O2(g) is 0.21 mol/L, what will be the equilibrium concentration of NO(g) at this temperature?arrow_forwardPotassium chlorate, potassium chloride, and water is produced by passing chlorine gas into a hot solution of potassium hydroxide. Calculate the volume in L of chlorine gas needed to produce 724.25 mL of 4.25 M potassium chlorate. The density of chlorine gas is 3.17 g/L. Atomic Mass: K: 39.098 g/mol Cl: 35.453 g/mol O: 15.999 g/mol H: 1.008 g/molarrow_forward
- Potassium chlorate, potassium chloride, and water is produced by passing chlorine gas into a hot solution of potassium hydroxide. Calculate the volume in L of chlorine gas needed to produce 909.97 mL of 4.92 M potassium chlorate. The density of chlorine gas is 3.17 g/L. Atomic Mass: K: 39.098 g/mol Cl: 35.453 g/mol O: 15.999 g/mol H: 1.008 g/mol Round your answer to 2 decimal places.arrow_forwardChlor-alkali plants electrolyze NaCl to produce the commodity chemicals caustic soda and chlorine gas. Industrial waste effluent released into waterways from these plants can contain trace amounts of mercury. Legally, the effluent can contain up to 2.50 x 10-9 mol/L of mercury. Determine the minimum volume of water, in megalitres (ML), that must be added to a 1.13 g sample of mercury to dilute the effluent to acceptable levels.(Do not show your work in the space provided; record only your final answer with the correct number of significant digits and the proper units.)arrow_forwardChlor-alkali plants electrolyze NaCl to produce the commodity chemicals caustic soda and chlorine gas. Industrial waste effluent released into waterways from these plants can contain trace amounts of mercury. Legally, the effluent can contain up to 2.50 x 10-9 mol/L of mercury. Determine the minimum volume of water, in megalitres (ML), that must be added to a 1.14 g sample of mercury to dilute the effluent to acceptable levels. Record only your numerical answer with the correct number of significant digits. You do not need to include units as the units appear for you beside the answer box already.arrow_forward
- Write the complete and balanced chemical equation for this precipitation reaction.FeSO4(aq)+Ba(OH)2(aq)→FeSO4(aq)+Ba(OH)2(aq)→ Express your answer as a chemical equation. Identify all of the phases in your answer. Write the complete and balanced chemical equation for this precipitation reaction.Na2S(aq)+ZnSO4(aq)→Na2S(aq)+ZnSO4(aq)→ Express your answer as a chemical equation. Identify all of the phases in your answer.arrow_forwardA miner’s lamp burns acetylene (C2H2) that is produced from water dripping onto solid CaC2. The other product formed from the reaction is calcium hydroxide. What volume of water (d = 1.00 g/mL) is required to react with 12.5 g of calcium carbide (CaC2) in the lamp?arrow_forwardImagine that you were the chief engineer for NASA's Apollo 13 mission to the moon. The air filter which they had been using is fully saturated and no longer works. The astronauts are running out of oxygen and need to get rid of the excess carbon dioxide. You remember that the astronauts have a container of 14.5 kg of sodium hydroxide on the ship. As a chemical engineer, you know that sodium hydroxide can be used to remove carbon dioxide from the air by producing sodium carbonate and dihydrogen monoxide. How many liters of carbon dioxide are cleaned by the amount of sodium hydroxide given in the problem? The astronauts have 3 days left before they land on earth. You know that there are 4 astronauts, and each astronaut emits roughly 700 grams of carbon dioxide (CO2) each day. • How many liters of CO2 are produced by the astronauts? • Is there enough NaOH for the astronauts to survive the rest of their trip? If the astronaut survived the trip, how much NaOH was left over? If the astronaut…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning