Concept explainers
(a)
The total energy of the earth-satellite system.
(a)
Answer to Problem 60P
The total energy of the earth-satellite system is
Explanation of Solution
Write the expression for the total energy of the earth-satellite system.
Here,
Write the expression for the
Here,
Write the expression for
Here,
Use equation (II) and (III) in (I) to solve for
Conclusion:
Substitute
Therefore, the total energy of the earth-satellite system is
(b)
The magnitude of the
(b)
Answer to Problem 60P
The magnitude of the angular momentum of the satellite is
Explanation of Solution
Write the expression for the angular momentum of the satellite.
Here,
The velocity vector and the position vector are perpendicular to each other at point of the orbit.
Conclusion:
Substitute
Therefore, the magnitude of the angular momentum of the satellite is
(c)
The speed of the satellite at apogee and the distance from the center of the earth.
(c)
Answer to Problem 60P
The speed of the satellite at apogee is
Explanation of Solution
The energy and angular momentum of the earth-satellite system is conserved.
Write the expression for the earth-satellite system at apogee.
Here,
Use equation (V) to solve for
Use equation (VII) in (VI) to solve for
Conclusion:
Substitute
The smaller value of represents the velocity at the apogee while the larger value refers to the velocity at perigee.
Substitute
Therefore, the speed of the satellite at apogee is
(d)
The semi-major axis of the orbit.
(d)
Answer to Problem 60P
The semi-major axis of the orbit is
Explanation of Solution
Write the expression for the major axis.
Use equation (IX) to solve for
Conclusion:
Substitute
Therefore, the semi-major axis of the orbit is
(e)
The period of the revolution around the orbit.
(e)
Answer to Problem 60P
The period of the revolution is
Explanation of Solution
Write the expression for the period of revolution using Kepler law of planetary motion.
Here,
Conclusion:
Substitute
Therefore, the period of the revolution is
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Show that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- According to the provided information answer the question accorrding to grade 11 physics Jerry has decided to give up his part-time job for a new career, cat-burglar! Jerry loves the idea of dressing up like a cat all day and of course the chance of meeting Cat Woman! On Jerry's first "job" he figures out his escape plan. He travels 3.0 km south for 15 minutes and then 8.0 km west for 1.5 hours before reaching his house. Draw a sketch diagram of the path he took with all the appropriate labels.arrow_forwardPlease solve and answer all parts of the question correctly please. Thank you!!arrow_forwardPlease solve and answer this question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning