![Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)](https://www.bartleby.com/isbn_cover_images/9781305586871/9781305586871_largeCoverImage.gif)
Concept explainers
The earth’s gravitational field when the atmospheric pressure is zero and the outer space would start at the planet’s surface.
![Check Mark](/static/check-mark.png)
Answer to Problem 1OQ
Option (b) Yes, and it would be essentially the same as the current value.
Explanation of Solution
The air particles are attracted towards the earth’s atmosphere due to the gravitational acceleration and every particles possess some mass (significantly small), so that it exerts force on the surface of earth. As the force acts on a unit area, the result will be the atmospheric pressure acts on the earth’s surface. As the gravity is suddenly switched off, that will lead to the evaporation of atmosphere and the value of atmospheric pressure becomes zero. And it will not affect the gravitational field of the planet.
Write the expression for the gravitational field,
Here,
The magnitude of the gravitational field depends on the mass and the radius of the planet.
Conclusion:
Since the magnitude of the planet’s gravitational field is not depend on the atmospheric pressure, option (b) is correct.
The mass as well as the radius of the planet remains same the magnitude of
Switching off the gravity would let the atmosphere evaporate away, but the switching off the atmosphere has no effect in the planet’s gravitational field Thus, option (c) is incorrect.
The atmosphere will evaporate away but the magnitude of the gravitational field of the planet remains same Thus, option (d) is incorrect.
Switching off the gravity will led to the evaporation of the atmosphere and the atmospheric pressure is not depending on the magnitude of the field Thus, option (e) is incorrect.
Want to see more full solutions like this?
Chapter 11 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- help me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forward
- Which figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardYou throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forward
- Help me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forwardThree point-like charges are placed at the corners of a square as shown in the figure, 28.0 cm on each side. Find the minimum amount of work required by an external force to move the charge q1 to infinity. Let q1=-2.10 μC, q2=+2.40 μС, q3=+3.60 μC.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305804562/9781305804562_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305120785/9781305120785_smallCoverImage.gif)