Suppose that an oil-fired power plant is designed to produce 125 MW (megawatts) of electrical power. The turbine operates between temperatures of 740°C and 380°C and has an efficiency that is 80% of the ideal Carnot efficiency for these temperatures.
a. What is the Carnot efficiency for these temperatures?
b. What is the efficiency of the actual oil-fired turbines?
c. How many kilowatt-hours (kW·h) of electrical energy does the plant generate in 1 h? (The kilowatt-hour is an energy unit equal to 1 kW of power multiplied by 1 h.)
d. How many kilowatt-hours of heat must be obtained from the oil in each hour?
e. If one barrel of oil yields 1700 kW·h of heat, how much oil is used by the plant each hour?
(a)
The Carnot efficiency.
Answer to Problem 5SP
The Carnot efficiency is
Explanation of Solution
Given info:
Temperature of hot reservoir is
Write an expression to calculate the efficiency.
Here,
Substitute
Thus, the Carnot efficiency is
Conclusion:
The Carnot efficiency is
(b)
The efficiency of the actual oil-fired turbines.
Answer to Problem 5SP
The efficiency of the actual oil-fired turbines is
Explanation of Solution
Given info:
The efficiency of the oil-fired power plant is 80% of the efficiency of the Carnot efficiency.
Write an expression for efficiency of the actual oil-fired turbines.
Here,
Substitute
Thus, the efficiency of the actual oil-fired turbines is
Conclusion:
The efficiency of the actual oil-fired turbines is
(c)
The electrical energy generated by the plant in one hour.
Answer to Problem 5SP
The electrical energy generated by the plant in one hour is
Explanation of Solution
Given info:
The power of the oil-fired power plant is
Write an expression for electrical energy generated by the plant in one hour.
Here,
Substitute
Thus, the electrical energy generated by the plant in one hour is
Conclusion:
The electrical energy generated by the plant in one hour is
(d)
The heat obtained from oil in each hour.
Answer to Problem 5SP
The heat obtained from oil in each hour is
Explanation of Solution
Write an expression for efficiency of the actual oil-fired turbines.
Here,
Substitute
Thus, the heat obtained from oil in each hour is
Conclusion:
The heat obtained from oil in each hour is
(e)
The amount of oil required to produce
Answer to Problem 5SP
The amount of oil required to produce
Explanation of Solution
Given info:
The energy released is
Write an expression for the amount of oil required to produce
Here,
Substitute
Thus, the amount of oil required to produce
Conclusion:
The amount of oil required to produce
Want to see more full solutions like this?
Chapter 11 Solutions
Physics of Everyday Phenomena
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning