A Carnot engine operating in reverse as a heat pump moves heat from a cold reservoir at 7°C to a warmer one at 22°C.
a. What is the efficiency of a Carnot engine operating between these two temperatures?
b. If the Carnot heat pump releases 250 J of heat into the higher-temperature reservoir in each cycle, how much work must be provided in each cycle ?
c. How much heat is removed from the 7°C reservoir in each cycle?
d. The performance of a refrigerator or heat pump is described by a “coefficient of performance” defined as K = Qc/W. What is the coefficient of performance for our Carnot heat pump?
e. Are the temperatures used in this example appropriate to the application of a heat pump for home heating? Explain.
(a)
The efficiency of the Carnot engine.
Answer to Problem 3SP
The efficiency of the Carnot engine is
Explanation of Solution
Given info:
Temperature of hot reservoir is
Write an expression to calculate the efficiency.
Here,
Substitute
Thus, the efficiency of the Carnot engine is
Conclusion:
The efficiency of the Carnot engine is
(b)
The work provided in each cycle.
Answer to Problem 3SP
The work provided in each cycle is
Explanation of Solution
Given info:
Heat released to hot reservoir is
Write an expression for work provided in each cycle.
Here,
Substitute
Thus, work provided in each cycle is
Conclusion:
The work provided in each cycle is
(c)
The heat released from cold reservoir.
Answer to Problem 3SP
The heat released from cold reservoir is
Explanation of Solution
Write an expression for heat released from cold reservoir.
Here,
Substitute
Thus, the heat released from cold reservoir is
Conclusion:
The heat released from cold reservoir is
(d)
The coefficient of performance of the heat pump.
Answer to Problem 3SP
The coefficient of performance of the heat pump is
Explanation of Solution
Write an expression for coefficient of performance of the heat pump.
Here,
Substitute
Thus, the coefficient of performance of the heat pump is
Conclusion:
The coefficient of performance of the heat pump is
(e)
The possibility of application of the heat pump for home heating.
Answer to Problem 3SP
Yes, the heat pump can be used for home heating.
Explanation of Solution
For home heating only moderate energy range is required. That will be sufficient to increase the temperature of home slightly. Here for working of the pump, only moderate range of energy is required.
Since the energy required is moderate, the energy provided by the heat pump will be adequate. The energy release will be less compared to the energy required to run the heat pump.
Conclusion:
Yes, the heat pump can be used for home heating.
Want to see more full solutions like this?
Chapter 11 Solutions
Physics of Everyday Phenomena
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning