Concept explainers
(a)
The appropriate analysis model to describe the projectile and the rod
(a)
Answer to Problem 51AP
The appropriate analysis model to describe the particle and the rod is a projectile motion and the rod behaves like an isolated system.
Explanation of Solution
Conclusion:
The mass is moving to the right with linear velocity, as it strikes to a stationary rod the mass will follow projectile motion with the rod. The other end of the rod will also rotate about the fixed point to balance the rod, so the
Thus, the appropriate analytical model to describe the particle and the rod is a projectile motion and the rod behaves like an isolated system.
(b)
The angular momentum of the system before the collision about an axis through
(b)
Answer to Problem 51AP
The angular momentum of the system before the collision about an axis through
Explanation of Solution
The angular momentum before the collision for a given system is the sum of angular momentum of ball and rod. But before the collision angular momentum of the rod is zero because the rod is stationary.
Consider the mass of the ball is concentrated at its centre so it behaves like a particle.
Write the expression for the angular momentum of the system before the collision as.
Substitute
Re-arrange the terms.
Here,
Write the expression for momentum for a particle as.
Here,
Conclusion:
Substitute
Thus, the angular momentum of the system before the collision about an axis through
(c)
The moment of inertia of the system about an axis through
(c)
Answer to Problem 51AP
The moment of inertia of the system about an axis through
Explanation of Solution
The moment of inertia for a given system is the sum of the moment of inertia for particle and rod.
Write the expression for moment of inertia for a particle about the fix point
Here,
Write the expression for moment of inertia for rod about the fix point
Here,
Write the expression for total moment of inertia for rod-particle system about the fix point
Here,
Substitute
Simplify the above equation for
Conclusion:
Thus, the moment of inertia of the system about an axis through
(d)
The angular momentum of the system after the collision.
(d)
Answer to Problem 51AP
The total angular momentum of the system after the collision is
Explanation of Solution
Write the expression for the angular momentum of the system after the collision.
Here,
Conclusion:
Substitute
Thus, the total angular momentum of the system after the collision is
(e)
The angular speed
(e)
Answer to Problem 51AP
The angular speed
Explanation of Solution
Write the expression for conserved angular momentum as.
Here,
Conclusion:
Substitute
Simplify the above expression for
Thus, the angular speed
(f)
The kinetic energy of the system before the collision.
(f)
Answer to Problem 51AP
The kinetic energy of the particle before the collision is
Explanation of Solution
The kinetic energy of the system before the collision is equal to kinetic energy of the particle because before the collision the rod is not in motion so the kinetic energy of the rod becomes zero. Therefore before the collision the kinetic energy of the system becomes the kinetic energy of the particle.
Write the expression for kinetic energy of the particle before the collision as.
Here,
Conclusion:
Thus, the kinetic energy of the particle before the collision is
(g)
The kinetic energy of the system after the collision
(g)
Answer to Problem 51AP
The kinetic energy of the system after the collision is
Explanation of Solution
Write the expression for rotational kinetic energy of the particle-rod system after the collision as.
Here,
Conclusion:
Substitute
Simplify the above expression as.
Thus, the kinetic energy of the system after the collision is
(h)
The fractional change of kinetic energy due to the collision.
(h)
Answer to Problem 51AP
The fractional change of kinetic energy due to the collision is
Explanation of Solution
Write the expression for change in kinetic energy for the system as.
Here,
Write the expression for fractional change in kinetic energy as.
Here,
Conclusion:
Substitute
Simplify the above expression for
Substitute
Thus, the fractional change of kinetic energy due to the collision is
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Correct answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forward
- A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forward
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University