
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
6th Edition
ISBN: 9780134857107
Author: Paul Hewitt, John Suchocki
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 4RCQ
To determine
What is the fate of the energy in ultraviolet light incident on glass.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all steps
Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s.
Part A
Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air.
Express your answer in hours to one significant figure.
Rocket Science:
CH
83. A rocket of mass M moving at speed v ejects an infinitesimal
mass dm out its exhaust nozzle at speed vex. (a) Show that con-
servation of momentum implies that M dy = vex dm, where dy is
the change in the rocket's speed. (b) Integrate this equation from
some initial speed v; and mass M; to a final speed vf and mass Mf
Vf
to show that the rocket's final velocity is given by the expression
V₁ = V¡ + Vex ln(M¡/M₁).
Chapter 11 Solutions
Pearson eText Conceptual Physical Science -- Instant Access (Pearson+)
Ch. 11 - What is the principal difference between a radio...Ch. 11 - How does the frequency of an electromagnetic wave...Ch. 11 - In what region of the electromagnetic spectrum is...Ch. 11 - Prob. 4RCQCh. 11 - What is the fate of the energy in infrared light...Ch. 11 - How does the average speed of light in glass...Ch. 11 - Prob. 7RCQCh. 11 - Prob. 8RCQCh. 11 - Relative to the distance of an object in front of...Ch. 11 - Prob. 10RCQ
Ch. 11 - Prob. 11RCQCh. 11 - What is the angle between a light ray and its wave...Ch. 11 - What is the relationship between refraction and...Ch. 11 - Prob. 14RCQCh. 11 - Prob. 15RCQCh. 11 - Which has the higher frequency: red light or blue...Ch. 11 - What is the color of the peak frequency of solar...Ch. 11 - Prob. 18RCQCh. 11 - Prob. 19RCQCh. 11 - Prob. 20RCQCh. 11 - Why does the Sun look reddish at sunrise and...Ch. 11 - Prob. 22RCQCh. 11 - Prob. 23RCQCh. 11 - Which travels more slowly in glass: red light or...Ch. 11 - Prob. 25RCQCh. 11 - Prob. 26RCQCh. 11 - Is polarization a property of transverse waves,...Ch. 11 - How does the direction of polarization of light...Ch. 11 - Prob. 29RCQCh. 11 - How much unpolarized light does an ideal Polaroid...Ch. 11 - Electrons on a radio broadcasting tower are forced...Ch. 11 - Consider a pulse of laser light that is aimed at...Ch. 11 - The nearest star beyond the Sun is Alpha Centauri,...Ch. 11 - Blue-green light has a frequency of about 6 x 1014...Ch. 11 - A spider hangs by a strand of silk at eye level 30...Ch. 11 - When you walk toward a mirror, you see your image...Ch. 11 - When light strikes glass perpendicularly, about 4%...Ch. 11 - She looks at her face in the hand-held mirror....Ch. 11 - Wheels of a toy cart are rolled from a concrete...Ch. 11 - Prob. 47TARCh. 11 - Prob. 48TARCh. 11 - What is the fundamental source of electromagnetic...Ch. 11 - What is it, exactly, that waves in a light waver?Ch. 11 - Which have the longest wavelength: light waves,...Ch. 11 - Are the wavelengths of radio and television...Ch. 11 - Prob. 53ECh. 11 - Prob. 54ECh. 11 - What do radio waves and light have in common? What...Ch. 11 - Prob. 56ECh. 11 - Is glass transparent or opaque to light of...Ch. 11 - Short wavelengths of visible light interact more...Ch. 11 - What determines whether a material is transparent...Ch. 11 - The persons eye at point P looks into the mirror....Ch. 11 - Trucks often have signs on the back that say, If...Ch. 11 - What must be the minimum length of a vertical...Ch. 11 - What effect does your distance from the plane...Ch. 11 - From a steamy mirror, wipe away just enough...Ch. 11 - Prob. 65ECh. 11 - A friend says that a change in speed is necessary...Ch. 11 - Prob. 67ECh. 11 - Prob. 68ECh. 11 - Prob. 69ECh. 11 - A pair of toy cart wheels are rolled obliquely...Ch. 11 - Prob. 71ECh. 11 - Prob. 72ECh. 11 - How could you use the spotlights at a play to...Ch. 11 - What single color of light illuminating a ripe...Ch. 11 - Prob. 75ECh. 11 - Three lamps illuminate Patty OPlasma at the...Ch. 11 - What colors of ink do color ink-jet printers use...Ch. 11 - Very big particles, such as droplets of water,...Ch. 11 - Prob. 79ECh. 11 - Prob. 80ECh. 11 - Why does the Moon appear yellowish when it is low...Ch. 11 - Prob. 82ECh. 11 - Prob. 83ECh. 11 - When you stand with your back to the Sun, you see...Ch. 11 - A friend says that the secondary bow of a rainbow,...Ch. 11 - What percentage of light is transmitted by two...Ch. 11 - How can a single Polaroid filter be used to show...Ch. 11 - Light will not pass through a pair of Polaroid...Ch. 11 - In a physics study group, a friend declares in an...Ch. 11 - Prob. 90DQCh. 11 - Prob. 91DQCh. 11 - Light from a camera flash weakens with distance in...Ch. 11 - Prob. 93DQCh. 11 - Hold a pocket mirror almost at arms length from...Ch. 11 - Peter Hopkinson stands astride a large mirror and...Ch. 11 - Prob. 96DQCh. 11 - Red and green light of the same brightness combine...Ch. 11 - Below is a photo of science author Suzanne Lyons...Ch. 11 - Prob. 99DQCh. 11 - Prob. 100DQCh. 11 - When Stephanie Hewitt dips a glass rod into...Ch. 11 - Prob. 102DQCh. 11 - If you point the pinhole camera or the previous...Ch. 11 - Sunlight passing through a pinhole in a piece of...Ch. 11 - Choose the BEST answer to the question or the BEST...Ch. 11 - The source of electromagnetic waves is vibrating...Ch. 11 - Prob. 3RATCh. 11 - Whether a particular surface acts as a polished...Ch. 11 - Prob. 5RATCh. 11 - Refracted light that bends away from the normal is...Ch. 11 - The colors on the cover of your physics text are...Ch. 11 - The redness of a sunrise or sunset is due mostly...Ch. 11 - Prob. 9RATCh. 11 - Polarization occurs for waves that are (a)...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Formant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forwardmicrowavearrow_forward4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a) compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass. A o 0.3 3019 20KSarrow_forward
- Refer to the image attachedarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardMake up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forward
- A straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forwardA rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forward
- Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardA circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax