BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 4IP
A kicker’s extended leg is swung for 0.4 s in a counterclockwise direction while accelerating at 200 deg/s2. What is the angular velocity of the leg at the instant of contact with the ball? (Answer: 80 deg/s, 1.4 rad/s)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
When Galileo Galilei rolled a ball down an inclined plane, it traveled 1.0 meters in the first second, and a total of 4.0 meters in the first two seconds. What was its acceleration on this inclined plane?
2.0 meters per second2
3.0 meters per second2
4.0 meters per second2
5.0 meters per second2
6.0 meters per second2
What was the ball’s acceleration on the inclined plane described above?
2.0 meters per second2
B. 3.0 meters per second2
4.0 meters per second2
6.0 meters per second2
8.0 meters per second2
Suppose as astronaut has landed on Mars. Fully equipped, the astronaut has a mass of 130 kg, and when the astronaut gets in scale, the reading is 477 N. What is the acceleration due to gravity on Mars?
Chapter 11 Solutions
BASIC BIOMECHANICS
Ch. 11 - The relative angle at the knee changes from 0 to...Ch. 11 - Identify the angular displacement, the angular...Ch. 11 - How many revolutions are completed by a top...Ch. 11 - A kickers extended leg is swung for 0.4 s in a...Ch. 11 - The angular velocity of a runners thigh changes...Ch. 11 - A tennis racquet swung with an angular velocity of...Ch. 11 - A 1.2-m golf club is swung in a planar motion by a...Ch. 11 - David is fighting Goliath. If Davids 0.75-m sling...Ch. 11 - A baseball is struck by a bat 46 cm from the axis...Ch. 11 - A polo players arm and stick form a 2.5-m rigid...
Ch. 11 - Explain how the velocity of the ball in Problem 4...Ch. 11 - A majorette in the Rose Bowl Parade tosses a baton...Ch. 11 - A cyclist enters a curve of 30-m radius at a speed...Ch. 11 - A hammer is being accelerated at 15 rad/s2. Given...Ch. 11 - A speed skater increases her speed from 10 m/s to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.Similar questions
- When Galileo Galilei pushed a ball down an inclined plane, it had an initial velocity (vo) of 4.0 meters per second (time = 0 seconds) and a final velocity (vf) of 10.0 meters per second (time = 2 seconds). How far did the ball travel along the inclined plane in these 2 seconds? 14 meters 20 meters 28 meters 40 meters 84 metersarrow_forwardRotate the ball horizontally on an 80 cm long non-stretchable cord with angular velocity of 3 s^(-1). After ten seconds of clockwise rotation, the cord breaks. At what speed and in what direction does the ball fly, if it was faced north at time t = Os? Where and after how much time does the ball land on the ground that is 1 m below the plaine in which we rotate the string? {Solution: v= (0.37 m/s,2.37 m/s); d=1.07 m, t=0.447 s.) }arrow_forwardWhen Galileo Galilei rolled a ball down an inclined plane, it traveled 2 meters in the first second, and a total of 8 meters in the first two With vo = 0, what was its acceleration on this inclined plane? 0 meter per second2 0 meters per second2 0 meters per second2 0 meters per second2 0 meters per second2arrow_forward
- The “mean-speed theorem” for finding average velocity under constant acceleration, proposed by the Oxford Calculators, and demonstrated geometrically by Nicole Oresme, is expressed algebraically as: density = weight/volume (m1)(v1) = (m2)(v2) (vm) = 1/2 (v0 + vf) s = (v0)(t) + 1/2 (a)(t2) velocity = distance/timearrow_forwardAn airplane flying directly eastward at a constant speed travels 293 km in 2.0 h. (a) what is the average velocity of the plane? (b) what is the instantaneous velocity?arrow_forwardThe “mean-speed theorem” for calculating average velocity under constant acceleration, developed by Thomas Bradwardine and the Mertonian Calculators at Oxford University, is expressed algebraically as: density = weight/volume (m1)(v1) = (m2)(v2) C. (vm) = 1/2 (v0 + vf) s = (v0)(t) + 1/2 (a)(t2) velocity = distance/timearrow_forward
- Using the Michaelis-Mentan graph pictured (graphing initial velocity and PNPP concentration), identify Vmax and Km as well as possible. Then, using the Lineweaver-Burk graph (graphing 1/Vo and 1 / PNPP concentration), label the reciprocals of Vmax and Km on the graph and use them to calculate Km and Vmax.arrow_forwarda toy car rolls 10 meters (m) across the floor. it takes 5 seconds (s) to cross this distance. what is the speed of this car?arrow_forwardSolve using Instantaneous Center of Zero Velocityarrow_forward
- A scientist was investigating if differences in the frictional work performed on a model car can change depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to measure the amount of frictional force experienced by the model car and the distance it traveled in meters. The scientists were able to evaluate the frictional work using the following data. Mass (g) Distance (m) Force Work Done by Friction (J) car going up the incline 100 39 0.063 2.457 car going down the incline 70 39 0.2309 ? It is known that the relationship between force and distance determines the work done by friction (W+). W₁ = fd Wf work done by friction f = force d = distance Question: How much work done by friction was exerted on the car as it moved down the inclined plane? You may use a calculator. 1 2.457 9.005 11.46 16.16 PREVIOUS FINISHarrow_forwardYou have measured the following data for enzyme X. Substrate Vo concentration (micromolar (mM) Isec) 0.05 10 0.1 60 0.5 175 1 250 350 490 10 492 20 494 50 499 100 498 200 498arrow_forwardStarting at rest, an object falls 144 feet in a vacuum (acceleration = 32 feet per second2). If the final velocity of the object was 96 feet per second at impact (vf), how long was the fall? 1.0 seconds 2.0 seconds C. 3.0 seconds 4.0 seconds 5.0 secondsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license