(a) If a pendulum has period T and you double its length, what is its new period in terms of T ? (b) If a pendulum has a length L and you want to triple its frequency, what should be its length in terms of L ? (c) Suppose a pendulum has a length L and period T on earth. If you take it to a planet where the acceleration of freely falling objects is ten times what it is on earth, what should you do to the length to keep the period the same as on earth? (d) If you do not change the pendulum’s length in part (c), what is its period on that planet in terms of T ? (e) If a pendulum has a period T and you triple the mass of its bob, what happens to the period (in terms of T )?
(a) If a pendulum has period T and you double its length, what is its new period in terms of T ? (b) If a pendulum has a length L and you want to triple its frequency, what should be its length in terms of L ? (c) Suppose a pendulum has a length L and period T on earth. If you take it to a planet where the acceleration of freely falling objects is ten times what it is on earth, what should you do to the length to keep the period the same as on earth? (d) If you do not change the pendulum’s length in part (c), what is its period on that planet in terms of T ? (e) If a pendulum has a period T and you triple the mass of its bob, what happens to the period (in terms of T )?
(a) If a pendulum has period T and you double its length, what is its new period in terms of T? (b) If a pendulum has a length L and you want to triple its frequency, what should be its length in terms of L? (c) Suppose a pendulum has a length L and period T on earth. If you take it to a planet where the acceleration of freely falling objects is ten times what it is on earth, what should you do to the length to keep the period the same as on earth? (d) If you do not change the pendulum’s length in part (c), what is its period on that planet in terms of T? (e) If a pendulum has a period T and you triple the mass of its bob, what happens to the period (in terms of T)?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.