EBK ENGINEERING FUNDAMENTALS: AN INTROD
EBK ENGINEERING FUNDAMENTALS: AN INTROD
5th Edition
ISBN: 8220100543401
Author: MOAVENI
Publisher: CENGAGE L
Question
Book Icon
Chapter 11, Problem 41P
To determine

Calculate the amount of natural gas required to heat the water in a heater.

Expert Solution & Answer
Check Mark

Answer to Problem 41P

The amount of natural gas required to heat the water in a heater is 72ft3day.

Explanation of Solution

Given data:

Volume of water used per day is 80gallons,

Initial temperature of water is, Tinitial=55°F,

Final temperature of water is, Tfinal=140°F,

Efficiency of heater is 80%,

From Table 11.13 in the textbook, the specific heat of water is, c=4180JkgK,

Standard density of water is 1000kgm3.

Formula used:

The relationship between degree Fahrenheit and degree Celsius is,

T(°C)=59[T(°F)32] (1)

Here,

T(°C) is the temperature in degree Celsius,

T(°F) is the temperature in degree Fahrenheit.

The formula to find thermal energy required to heat the water is,

Ethermal=mc(TfinalTinitial) (2)

Here,

m is the mass of the water,

c is the specific heat of water,

Tinitial is the initial temperature of water,

Tfinal is the final temperature of water.

Calculation:

Convert the unit of volume of the water,

Volume=80gallonsday[1gallon=3.7854×103m3]=(80gallonsday)(3.7854×103m31gallon)=(80×3.7854×103)m3dayVolume=0.3028m3day

Substitute 55°F for T(°F) in equation (1) to get the initial temperature in degree Celsius,

Tinitial(°C)=59[5532]=12.77°C

Substitute 140°F for T(°F) in equation (1) to get the final temperature in degree Celsius,

Tfinal(°C)=59[14032]=60°C

The expression to find the mass of the water is,

Mass=Volume×density=(0.3028m3day)(1000kgm3)Mass=302.8kgday

Substitute 302.8kgday for m, 4180JkgK for c, 12.77°C for Tinitial, and 60°C for Tfinal in equation (2) to find Ethermal,

Ethermal=(302.8kgday)(4180JkgK)(60°C12.77°C)      [ °C=K]=(302.8kgday)(4180JkgK)(6012.77)K

Ethermal=59.7792×106Jday

The unit conversion on above result is,

Ethermal=59.7792×106Jday[1day=24h]=59.7792×106(Jday×1day24h)[1h=3600s]=(2.491×106Jh)(1h3600s)[1Js=1W]Ethermal=693W

Do the unit conversion on above result,

Ethermal=693W[1W=3.412Btuh]=(693W)(3.412Btuh1W)Ethermal=2364.6Btuh

At standard 77°F temperature, the heating value of methane is 978Btuft3. Since the major composition of natural gas is methane, consider the heating value of natural gas is 978Btuft3, as the range of temperature given as 55°F to 140°F considered for 77°F.

Then the amount of natural gas required to heat the water in heater can be determined from the below expression:

Volumeofgas=EthermalEfficiency×Heatingvalueofgas=2364.6Btuh0.8(978Btuft3)[1day=24h]=(3ft3h)(24h1day)Volumeofgas=72ft3day

Therefore, the amount of natural gas required to heat the water in a heater is 72ft3day.

Conclusion:

Hence, the amount of natural gas required to heat the water in a heater is 72ft3day.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
) We started a new production process and its study gave the total deviations The standard value (for 25 samples of the product, sample size 4) is .105 .Calculate the capacity of this process The product specification limits are: 6.30 = LSL 6.50 = USL Standard deviation in a manufacturing system is 0.038 = We made improvements to the system and the deviation has become Standard 0.030 = σ What is required is to calculate the estimated coefficient before and after the operation Optimization. What is your conclusion? : A find out the optimal solution: 1-Average Outgoing Quality AOQ 2- operating Characteristics Curve 100% Inspection 3-Acceptable Quality level 4- Average outgoing Quality AOQ 5- Capability Index CPK
Following are the data of gauge and discharge collected at a particular section of the river by stream gauging operation. Gauge reading Discharge Gauge reading Discharge (m) (cms) (m) (cms) 7.65 15 8.48 170 7.70 30 8.98 400 7.77 57 9.30 600 7.80 39 9.50 800 7.90 60 89 10.50 1500 7.91 100 11.10 2000 8.08 150 11.70 2400 1. Develop a rating curve for this stream at this section for use in estimating the discharge for a known gauge reading and fit a linear regression equation for use in estimation of stage for a known value of discharge. Use a value of 7.50 as the gauge reading corresponding to zero discharge. (20 pts) Equation 1 arith 2. What is the coefficient of correlation of the derived relationship? (10 pts) R2² arith Equation 2 log R2 log 3. Determine the stage for a discharge of 3500 cms (5 pts) 4. Determine the discharge for a stage of 15 m (5 pts) NB Do both arithmetic and logarithmic plots
Q2/ A (2m x 4 m) rectangular flexible foundation is placed above the ground surface (G.S) for two layers of clay, each layer 10 m thick. The modulus of Elasticity (E.) of the upper layer is 13 MN/m² and that of the lower layer is 15 MN/m². The Poisson ratio is (u, = 0.6) for the two layers. The pressure (stress) of 100 kN/m²is distributed along the surface of foundation. Determine the rigid immediate settlement at the corner of the foundation using Elastic theory method?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,