Engineering Fundamentals: An Introduction to Engineering
Engineering Fundamentals: An Introduction to Engineering
6th Edition
ISBN: 9780357112311
Author: Saeed Moaveni
Publisher: Cengage Learning US
Question
Book Icon
Chapter 11, Problem 41P
To determine

Calculate the amount of natural gas required to heat the water in a heater.

Expert Solution & Answer
Check Mark

Answer to Problem 41P

The amount of natural gas required to heat the water in a heater is 72ft3day.

Explanation of Solution

Given data:

Volume of water used per day is 80gallons,

Initial temperature of water is, Tinitial=55°F,

Final temperature of water is, Tfinal=140°F,

Efficiency of heater is 80%,

From Table 11.13 in the textbook, the specific heat of water is, c=4180JkgK,

Standard density of water is 1000kgm3.

Formula used:

The relationship between degree Fahrenheit and degree Celsius is,

T(°C)=59[T(°F)32] (1)

Here,

T(°C) is the temperature in degree Celsius,

T(°F) is the temperature in degree Fahrenheit.

The formula to find thermal energy required to heat the water is,

Ethermal=mc(TfinalTinitial) (2)

Here,

m is the mass of the water,

c is the specific heat of water,

Tinitial is the initial temperature of water,

Tfinal is the final temperature of water.

Calculation:

Convert the unit of volume of the water,

Volume=80gallonsday[1gallon=3.7854×103m3]=(80gallonsday)(3.7854×103m31gallon)=(80×3.7854×103)m3dayVolume=0.3028m3day

Substitute 55°F for T(°F) in equation (1) to get the initial temperature in degree Celsius,

Tinitial(°C)=59[5532]=12.77°C

Substitute 140°F for T(°F) in equation (1) to get the final temperature in degree Celsius,

Tfinal(°C)=59[14032]=60°C

The expression to find the mass of the water is,

Mass=Volume×density=(0.3028m3day)(1000kgm3)Mass=302.8kgday

Substitute 302.8kgday for m, 4180JkgK for c, 12.77°C for Tinitial, and 60°C for Tfinal in equation (2) to find Ethermal,

Ethermal=(302.8kgday)(4180JkgK)(60°C12.77°C)      [ °C=K]=(302.8kgday)(4180JkgK)(6012.77)K

Ethermal=59.7792×106Jday

The unit conversion on above result is,

Ethermal=59.7792×106Jday[1day=24h]=59.7792×106(Jday×1day24h)[1h=3600s]=(2.491×106Jh)(1h3600s)[1Js=1W]Ethermal=693W

Do the unit conversion on above result,

Ethermal=693W[1W=3.412Btuh]=(693W)(3.412Btuh1W)Ethermal=2364.6Btuh

At standard 77°F temperature, the heating value of methane is 978Btuft3. Since the major composition of natural gas is methane, consider the heating value of natural gas is 978Btuft3, as the range of temperature given as 55°F to 140°F considered for 77°F.

Then the amount of natural gas required to heat the water in heater can be determined from the below expression:

Volumeofgas=EthermalEfficiency×Heatingvalueofgas=2364.6Btuh0.8(978Btuft3)[1day=24h]=(3ft3h)(24h1day)Volumeofgas=72ft3day

Therefore, the amount of natural gas required to heat the water in a heater is 72ft3day.

Conclusion:

Hence, the amount of natural gas required to heat the water in a heater is 72ft3day.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
STRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?
18:02 28% 50 同 こ 【Recommend】 Easily add text in PDF 3 m 35 kN 4m 84 kN +3m EA = constant E = 200 GPa A T5 4m Add 1,200 mm² Find Horizontal and vertical displacement at B 4 kN m m- B Determine Vertical displacement at C Determine the displacement or point B of the steel beam shown in Take E200 GPa, I = 500(106) mm4. 5 m 2/ 40 kN B 12 kN/m 4 m. 12 kN/m 3 m B 10 m- E constant = 70 GPa I 554 (10) mm Determine Displacement at C ΙΣΤ Edit Annotate Fill & Sign Convert All
In a floor of an industrial building, boilers are supported symmetrically on secondary beams A and B, which have a centre-to-centre distance of 5 m and which are in turn supported by the main beam, which has a span of 9 m (see Fig. 10.62). Design the main beam given the following data:

Chapter 11 Solutions

Engineering Fundamentals: An Introduction to Engineering

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,