Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
12th Edition
ISBN: 9781259587399
Author: Eugene Hecht
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 40SP
A popgun uses a spring for which
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An ideal spring is used to fire a 25.0 g pellet horizontally. The spring has a spring constant of k = 125 N/m
and is initially compressed by x = 9.00 cm from its equilibrium position. What is the speed of the pellet as it
leaves the spring? This is a positive number. Give your answer in m/s.
An 2.1 kg object is launched down a frictionless ramp at 7.2 m/s towards a spring connected to the bottom end of the ramp. The ramp is 44.8 m long and is angled at 48.4o above the horizontal. The spring constant for the spring is 1770 N/m. By how much is the spring compressed by the object? Round final answers to 2 decimal places.
A 200 g block on a frictionless surface is pushed
against a spring with spring constant 500 N/m,
compressing the spring by 2.0 cm. When the block
is released, at what speed does it shoot away from
the spring?
Chapter 11 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
Ch. 11 - 18. A small metal sphere weighing 10.0 N is hung...Ch. 11 - 19. How much energy is stored in a spring with an...Ch. 11 - 20. Given that a spring oscillates at a frequency...Ch. 11 - 21. If a reed is oscillating in SHM such that each...Ch. 11 - 22. A stretched wire vibrates in SHM such that...Ch. 11 - 23. A horizontal spring is set up like the one in...Ch. 11 - 24. A horizontal spring is set up like the one in...Ch. 11 - 25. A horizontal spring is set up like the one in...Ch. 11 - 26. For the system shown in Fig. 11-3, write an...Ch. 11 - Prob. 27SP
Ch. 11 - 28. What is the value of the temporal period of a...Ch. 11 - 11.29 [I] Assume a simple pendulum swings...Ch. 11 - 30. A pendulum is timed as it swings back and...Ch. 11 - 11.31 [II] A 300-g mass at the end of a Hookean...Ch. 11 - 32. A coiled Hookean spring is stretched 10 cm...Ch. 11 - 33. A 2.5-kg body undergoes SHM and makes exactly...Ch. 11 - 34. A 300-g object attached to the end of a spring...Ch. 11 - 35. A Hookean spring is stretched 20 cm when a...Ch. 11 - 36. A 300-g body fixed at the end of a spring...Ch. 11 - 37. With a 50-g mass at its end, a spring...Ch. 11 - 11.39 [II] A 500-g object is attached to the end...Ch. 11 - 11.40 [II] A popgun uses a spring for which N/cm....Ch. 11 - 11.41 [II] A cubical block on an air table...Ch. 11 - 42. Find the frequency of vibration on Mars for a...Ch. 11 - 43. A “seconds pendulum” beats seconds; that is,...Ch. 11 - 44. Show that the natural period of vertical...Ch. 11 - 45. A particle that is at the origin of...Ch. 11 - 46. A particle vibrates according to the equation...Ch. 11 - 47. A particle oscillates according to the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardA small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. The coefficient of kinetic friction between the box and the track is 0.35 along the entire track. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d. c. Compare your answer with your answer to Problem 50 if you did that problem.arrow_forward
- A small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. Kinetic friction between the box and the track is negligible on the hill, but the coefficient of kinetic friction between the box and the horizontal parts of track is 0.35. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times. a. What would you include in the system? Explain your choice. b. Calculate d.arrow_forwardA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P8.35. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P8.35arrow_forwardIn a laboratory experiment, 1 a block of mass M is placed on a frictionless table at the end of a relaxed spring of spring constant k. 2 The spring is compressed a distance x0 and 3 a small ball of mass m is launched into the block as shown in Figure P11.22. The ball and block stick together and are projected off the table of height h. Find an expression for the horizontal displacement of the ballblock system from the end of the table until it hits the floor in terms of the parameters given. FIGURE P11.22arrow_forward
- A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardWhat average power is generated by a 70.0-kg moun-tain climber who climbs a summit of height 325 in in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forwardA spring gun (spring constant k-42 N/m) is used to shoot a 30-g ball horizontally. Initially the spring is compressed by 9 cm. What is the speed of the ball when it hits the ground 14 m below the gun?arrow_forward
- Problem 2. A 100-g toy car is propelled by a compressed spring that starts it moving. The car follows the curved track in Figure 7. Show that the final speed of the toy car is 0.687 m/s if its initial speed is 2.00 m/s and it coasts up the frictionless slope, gaining 0.180 m in altitude.arrow_forwarda cannonball with a mass of 6.95 kg is placed in a vertical, spring-loaded cannon bearing a spring with a spring constant of 5.6 newtons/meter. The spring is compressed by a distance of 4.54 meters and released. Please use g=9.80 m/s2. The max height reached by the cannonball in meters is?arrow_forwardThe massless spring of a spring gun has a force constant k = below.) How much was the spring compressed initially? (Find d, in meters.) 0.06 N/cm. When the gun is aimed vertically, a 29 g projectile is shot to a height of 5.0 m above the end of the expanded spring. (See 5.0 m d = ? NNNNNNNN ONNNNNNNMarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY