Engineering Fundamentals
Engineering Fundamentals
6th Edition
ISBN: 9780357112144
Author: Saeed Moaveni
Publisher: MISC PUBS
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 35P

(a)

To determine

Find the amount of radiation emitted from a hot pavement in Arizona.

(a)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.8.

Temperature of the surface, Ts=50°C.

Formula used:

The relationship between degree Celsius (°C) and Kelvin is,

T(K)=T(Co)+273 (1)

Here,

T(°C) is the temperature in degree Celsius,

T(K) is the temperature in Kelvin.

The formula for the amount of radiant energy emitted by a surface is,

q=εσATs4 (2)

Here,

ε is the emissivity of the surface,

σ is the Boltzmann constant,

A is the area of the surface,

Ts is the temperature of the surface.

Calculation:

Substitute 50°C for T(°C) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=50+273=323K

Substitute 0.8 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 323K for Ts in equation (2) to find q,

q=(0.8)(5.67×108Wm2K4)(1m2)(323K)4=0.8×5.67×108×(323)4W=493.7W

Do the unit conversion in above result,

q=493.7W[1W=3.4123Btuh]=(493.7W)(3.4123Btuh1W)=1684.7Btuh

Therefore, in SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

Conclusion:

Hence, in SI units, The amount of radiation emitted from a hot pavement in Arizona is 493.7W and in U.S customary units, it is 1684.7Btuh.

(b)

To determine

Find the amount of radiated emitted from a hood of a car.

(b)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.9.

Temperature of the surface, Ts=40°C.

Calculation:

Substitute 40°C for T(Co) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=40+273=313K

Substitute 0.9 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 313K for Ts in equation (2) to find q,

q=(0.9)(5.67×108Wm2K4)(1m2)(313K)4=0.8×5.67×108×(313)4W=489.8W

Do the unit conversion in above result,

q=498.8W            [1W=3.4123Btuh]=(498.8W)(3.4123Btuh1W)=1671.2Btuh

Therefore, in SI units, the amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

Conclusion:

Hence, in SI units, the amount of radiation emitted from a hood of a car is 489.8W and in U.S customary units, it is 1671.2Btuh.

(c)

To determine

Find the amount of radiated emitted from a sunbather.

(c)

Expert Solution
Check Mark

Answer to Problem 35P

In SI units, The amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Explanation of Solution

Given data:

Area of the surface, A=1m2.

Emissivity of the surface, ε=0.9.

Temperature of the surface, Ts=38°C.

Calculation:

Substitute 38°C for T(°C) in equation (1) to find the surface temperature in Kelvin,

Ts(K)=38+273=311K

Substitute 0.9 for ε, 5.67×108Wm2K4 for σ, 1m2 for A, and 311K for Ts in equation (2) to find q,

q=(0.9)(5.67×108Wm2K4)(1m2)(311K)4=0.9×5.67×108×(311)4W=477.4W

Do the unit conversion in above result,

q=477.4W[1W=3.4123Btuh]=(477.4W)(3.4123Btuh1W)=1629.0Btuh

Therefore, in SI units, the amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Conclusion:

Hence, in SI units, the amount of radiation emitted from a sunbather is 477.4W and in U.S customary units, it is 1629.0Btuh.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. Two 400 g blocks are connected by a rigid rod. The Blocks can rotate freely at the ends of the rod, so the rod does not apply any moments to the blocks. The blocks are in contact with the wall and floor, and can slide without friction. The system is released from rest when X=24cm and Y=18cm. Ignore the mass of the rod. What are the initial accelerations of Block A and Block B just after being released? Hint: See Assignment 4, Problem 2 for help getting a relationship between the acceleration of Block A and the acceleration of Block B. Y m = 400 g A | L g I 1 I I X B m = 400 g
The momentum of the force F = -100 i -70 j + 50 k around the point O is MO = 410 i- 300 j + 400 k, Determine the coordinates of the point through which the line of actionof F intercepts the yz plane.
Average sludge production reported by members of the National Association of Clean Water Agencies is 0.7 tons of sludge TS per MG wastewater treated. Assume that the organic matter (VS) in the sludge contains 10% N and that the ratio of VS/TS in sludge is 0.85. A) How many mg/L of N are removed from the wastewater due to assimilation? B) If the raw wastewater contained 50 mg/L total N, what percent was removed via assimilation? C) Why is this a disappointing result in terms of nutrient recovery and reuse goals?

Chapter 11 Solutions

Engineering Fundamentals

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning