Concept explainers
(a)
Find the amount of radiation emitted from a hot pavement in Arizona.
(a)

Answer to Problem 35P
In SI units, The amount of radiation emitted from a hot pavement in Arizona is
Explanation of Solution
Given data:
Area of the surface,
Emissivity of the surface,
Temperature of the surface,
Formula used:
The relationship between degree Celsius
Here,
The formula for the amount of radiant energy emitted by a surface is,
Here,
Calculation:
Substitute
Substitute
Do the unit conversion in above result,
Therefore, in SI units, The amount of radiation emitted from a hot pavement in Arizona is
Conclusion:
Hence, in SI units, The amount of radiation emitted from a hot pavement in Arizona is
(b)
Find the amount of radiated emitted from a hood of a car.
(b)

Answer to Problem 35P
In SI units, The amount of radiation emitted from a hood of a car is
Explanation of Solution
Given data:
Area of the surface,
Emissivity of the surface,
Temperature of the surface,
Calculation:
Substitute
Substitute
Do the unit conversion in above result,
Therefore, in SI units, the amount of radiation emitted from a hood of a car is
Conclusion:
Hence, in SI units, the amount of radiation emitted from a hood of a car is
(c)
Find the amount of radiated emitted from a sunbather.
(c)

Answer to Problem 35P
In SI units, The amount of radiation emitted from a sunbather is
Explanation of Solution
Given data:
Area of the surface,
Emissivity of the surface,
Temperature of the surface,
Calculation:
Substitute
Substitute
Do the unit conversion in above result,
Therefore, in SI units, the amount of radiation emitted from a sunbather is
Conclusion:
Hence, in SI units, the amount of radiation emitted from a sunbather is
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Fundamentals
- A simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy = 50 ksi. Suppose that P = 40 k and M = 68 ft-k. For W10 x 33: Ix = = 171 in.4; for L = 10 ft and C for Lc = 10 ft: = 1.0: фь Мп = 134 ft-kips and Mn/b = 89.3 ft-kips; Pn = 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' a. Use LRFD. Select the interaction formula: A) Pu 8 + Mur Muy + <1.0 Ферп 9 Фь Мих Pu Mux Muy B) + + 20c Pn Фь Мих ФоМпу .) <1.0 -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Pa A) + Pn/Sc Max Mnx/b May + < 1.0 Mny 1/526 Pa Max May B) + + <1.0 2Pn/c Mnx/b Mny/b -Select- ✓…arrow_forward5. Use the graph and data table below to determine: strain(in/in) 0 Stress (psi) 30,000 25,000 20,00 15,000 stress (psi) 0 2,500 0.00025 5,000 0.0005 7,500 0.00075 9,600 0.00096 11,170 0.001117 13,500 0.00135 10,000 16,612 0.001875 15,430 0.0025 5,000 22,350 0.00312 26,800 0.0042 25,810 0.00472 Stress Strain Curve ☑ 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Strain (in/in) a) Proportional limits: (stress in units of psi, strain in units of in/in) b) Modulus of elasticity (units: ksi) c) Ultimate strength (units: psi) d) Rupture strength (units: psi)arrow_forwardQ2. Find the support reactions at A and F for the given structure in Fig.(2). 80kN-m 2 kN 1 m 2 m Im 1 m 2 m Fig. (2)arrow_forward
- A continuous foundation is shown in Figure 1. If the load eccentricity, e = 0.5 meter. Determine the ultimate load Qult per unit length of the foundation. Use Mayerhof’s effective area method. Given B = 2 meter, Df = 2.0 meter , ϕ = 40 , c’ = 0 kN/m3, γ = 16.5 kN/m3 . Calculate also the Factor of Safety for the shallow foundation.arrow_forwardA simply supported beam is subjected to the end couples (bending is about the strong axis) and the axial load shown in the figure below. These moments and axial load are from service loads and consist of equal parts dead load and live load. Lateral support is provided only at the ends. Neglect the weight of the beam and investigate this member as a beam-column. Use Fy that P40 k and M = 68 ft-k. For W10 × 33: I = 171 in.4; 10 ft and C₁ = 1.0: Mn = 134 ft-kips and Mn/₁ = 89.3 ft-kips; = 50 ksi. Suppose for Lb for Lc - = 10 ft: Pn 330 kips and Pr/c = 220 kips. W10 X 33 P M M 10' Pu A) + Ферп 9 a. Use LRFD. Select the interaction formula: Mur 84, Mnz Muy + <1.0 Фь Мпу Pu Mur Muy B) + + ≤ 1.0 20c Pn Фь Мих nx ФоМпу -Select- ✓ Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member is -Select- b. Use ASD. Select the interaction formula: Ра 8 Max May A) + + <1.0 Pn/c Mnx/b Mny/b Pa Max May B) + + 1.0 2Pn/c Mnx/b Mny/b -Select- Compute the…arrow_forwardDetermine whether the given member satisfies the appropriate AISC interaction equation. Do not consider moment amplification. The loads are 50% dead load and 50% live load. Bending is about the x axis, and the steel is ASTM A992. Suppose that P = 280 k. For W12 x 106 with Fy = 50 ksi and Lc = 14 feet: Ферп 1130 kips, Pn/Sc = 755 kips, Mn = 597 ft-kips, Mn/₁ = 397 ft-kips. P 240 ft-k W12 X 106 14' K₁ = Ky = 1.0 240 ft-k a. Use LRFD. P Determine the factored axial compressive load and the factored bending moment. (Express your answers to three significant figures.) P₁ = Mu = kips ft-kips Select the interaction formula: P₁ A) + Мих Muy + ≤1.0 Ферп 9 Фь Мих of Mny Pu Мих Muy B) + 20c Pn Mnz + <1.0 Фь Мпу -Select- Compute the interaction formula. (Express your answer to three significant figures.) -Select- 1.0 This member -Select- b. Use ASD. the AISC Specification. Determine the total axial compressive load and the maximum bending moment. (Express your answers to three significant…arrow_forward
- Refer to the following figure: K 6 m T 0.25 H 0.75 H 1 m A c,O,Y 3 m B 2 m 1 m C Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 17.5 kN/m³, c = 30 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the sheet-pile section modulus for the braced cut. Use all = 150 MN/m². (Enter your answer to three significant figures.) S = ×105 m³/marrow_forwardRefer to the braced cut shown in the following figure: -3.5 m 1 m A Sand Y,',c' 2 m B 2 m C 1.5 m Given: γ · = 21 kN/m³, ′ = 40°, and c' = 0. The struts are located at 4 m center-to-center in the plan. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA = kN PB = kN Pc kNarrow_forwardRefer to the following figures: 6 m 0.25 H 0.75 H 3 m 2 m 1 m A с.ф.у 1 m B Figure Peck's (1969) apparent-pressure envelope for cuts in soft to medium clay Given: y = 18.4 kN/m³, c = 30 kN/m², p = 0, and center-to-center spacing of struts in the plan = 5 m. Determine the strut loads at levels A, B, and C. (Enter your answers to three significant figures.) PA= kN PB = kN Pc= kNarrow_forward
- Refer to the following figure: 6 m 3 m 2 m 1 m A c,φ,γ 1 m B Given: y = 17.9 kN/m³, c = 60 kN/m², 6 = 0, and center-to-center spacing of struts in the plan = 5 m. The length of the cut is 12.5 m. Determine the factor of safety against bottom heave for the braced cut. Use the equation CNC (1+0.25) FS = զ с x + H B' :) H (Enter your answer to three significant figures.) FS =arrow_forwardGiven Data Initial Road Design: • Design speed: 85 km/h • • Radius of both circular arcs: R = 845 m = 0.44 m/s³ = 250 m • Rate of gain of radial acceleration on all transitions: q Length of straight section between the curves: Lstr Redesigned Road: New design speed: 120 km/h • New radius: R' = 2500 marrow_forwardKindly answer correctly. Do not use AI.Please show the following:A diagram showing your understanding of each part of each question;Show your method of solving it; andCorrect solutions.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning


