THOMAS' CALCULUS (LL)>>CUSTOM< PKG<
14th Edition
ISBN: 9781323837689
Author: WEIR
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 1.1, Problem 34E
To determine
Calculate the real numbers x to fulfill the equation
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2
x² + 9 d x
1 x +9 dx
How did you get a(k+1) term?
Please answer it all and show all the work and steps on answer the questions
Chapter 1 Solutions
THOMAS' CALCULUS (LL)>>CUSTOM< PKG<
Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - In Exercise 1–6, find the domain and range of each...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Which of the graphs are graphs of functions of x,...Ch. 1.1 - Prob. 9ECh. 1.1 - Express the side length of a square as a function...
Ch. 1.1 - Express the edge length of a cube as a function of...Ch. 1.1 - A point P in the first quadrant lies on the graph...Ch. 1.1 - Consider the point (x, y) lying on the graph of...Ch. 1.1 - Consider the point (x, y) lying on the graph of ....Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Find the natural domain and graph the functions in...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Functions and Graphs
Find the natural domain and...Ch. 1.1 - Find the domain of .
Ch. 1.1 - Find the range of .
Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the following equations and explain why they...Ch. 1.1 - Graph the functions in Exercise.
Ch. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Graph the functions in Exercise.
Ch. 1.1 - Piecewise-Defined Functions
Graph the functions in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - Find a formula for each function graphed in...Ch. 1.1 - For what values of x is
Ch. 1.1 - What real numbers x satisfy the equation
Ch. 1.1 - Does for all real x? Give reasons for your...Ch. 1.1 - Graph the function
Why is f(x) called the integer...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - Graph the functions in Exercise. What symmetries,...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - In Exercise 47–62, say whether the function is...Ch. 1.1 - The variable s is proportional to t, and s = 25...Ch. 1.1 - Kinetic energy The kinetic energy K of a mass is...Ch. 1.1 - The variables r and s are inversely proportional,...Ch. 1.1 - Boyle’s Law Boyle’s Law says that the volume V of...Ch. 1.1 - A box with an open top is to be constructed from a...Ch. 1.1 - The accompanying figure shows a rectangle...Ch. 1.1 - In Exercises 69 and 70, match each equation with...Ch. 1.1 - y = 5x
y = 5x
y = x5
Ch. 1.1 - Graph the functions f(x) = x/2 and g(x) = 1 +...Ch. 1.1 - Graph the functions f(x) = 3/(x − 1) and g(x) =...Ch. 1.1 - For a curve to be symmetric about the x-axis, the...Ch. 1.1 - Three hundred books sell for $40 each, resulting...Ch. 1.1 - A pen in the shape of an isosceles right triangle...Ch. 1.1 - Industrial costs A power plant sits next to a...Ch. 1.2 - In Exercises 1 and 2, find the domains of f, g, f...Ch. 1.2 - In Exercises 1 and 2, find the domains of f, g, f...Ch. 1.2 - In Exercises 3 and 4, find the domains of f, g,...Ch. 1.2 - In Exercises 3 and 4, find the domains of f, g,...Ch. 1.2 - If f(x) = x + 5 and g(x) = x2 − 3, find the...Ch. 1.2 - If f(x) = x − 1 and g(x) = 1/(x + 1), find the...Ch. 1.2 - Prob. 7ECh. 1.2 - In Exercises 7–10, write a formula for .
8.
Ch. 1.2 - In Exercises 7–10, write a formula for .
9.
Ch. 1.2 - In Exercises 7–10, write a formula for .
10.
Ch. 1.2 - Let f(x) = x – 3, , h(x) = x3and j(x) = 2x....Ch. 1.2 - Prob. 12ECh. 1.2 - Copy and complete the following table.
Ch. 1.2 - Copy and complete the following table.
Ch. 1.2 - Evaluate each expression using the given table...Ch. 1.2 - Prob. 16ECh. 1.2 - In Exercises 17 and 18, (a) write formulas for f ∘...Ch. 1.2 - Prob. 18ECh. 1.2 - 19. Let . Find a function y = g(x) so that
Ch. 1.2 - Prob. 20ECh. 1.2 - A balloon’s volume V is given by V = s2 + 2s + 3...Ch. 1.2 - Use the graphs of f and g to sketch the graph of y...Ch. 1.2 - The accompanying figure shows the graph of y = –x2...Ch. 1.2 - The accompanying figure shows the graph of y = x2...Ch. 1.2 - Match the equations listed in parts (a)–(d) to the...Ch. 1.2 - The accompanying figure shows the graph of y = –x2...Ch. 1.2 - Prob. 27ECh. 1.2 - Prob. 28ECh. 1.2 - Prob. 29ECh. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Prob. 32ECh. 1.2 - Prob. 33ECh. 1.2 - Exercises 27–36 tell how many units and in what...Ch. 1.2 - Prob. 35ECh. 1.2 - Tell how many units and in what directions the...Ch. 1.2 - Prob. 37ECh. 1.2 - Prob. 38ECh. 1.2 - Prob. 39ECh. 1.2 - Prob. 40ECh. 1.2 - Prob. 41ECh. 1.2 - Prob. 42ECh. 1.2 - Prob. 43ECh. 1.2 - Prob. 44ECh. 1.2 - Prob. 45ECh. 1.2 - Prob. 46ECh. 1.2 - Prob. 47ECh. 1.2 - Prob. 48ECh. 1.2 - Prob. 49ECh. 1.2 - Prob. 50ECh. 1.2 - Prob. 51ECh. 1.2 - Graph the functions in Exercises 37–56.
52.
Ch. 1.2 - Prob. 53ECh. 1.2 - Prob. 54ECh. 1.2 - Prob. 55ECh. 1.2 - Prob. 56ECh. 1.2 - The accompanying figure shows the graph of a...Ch. 1.2 - The accompanying figure shows the graph of a...Ch. 1.2 - Prob. 59ECh. 1.2 - Prob. 60ECh. 1.2 - Vertical and Horizontal Scaling
Exercises 59–68...Ch. 1.2 - Prob. 62ECh. 1.2 - Prob. 63ECh. 1.2 - Prob. 64ECh. 1.2 - Tell in what direction and by what factor the...Ch. 1.2 - Prob. 66ECh. 1.2 - Prob. 67ECh. 1.2 - Prob. 68ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 70ECh. 1.2 - Prob. 71ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 73ECh. 1.2 - Prob. 74ECh. 1.2 - Prob. 75ECh. 1.2 - Graphing
In Exercises 69–76, graph each function...Ch. 1.2 - Prob. 77ECh. 1.2 - Prob. 78ECh. 1.2 - Prob. 79ECh. 1.2 - Prob. 80ECh. 1.2 - Prob. 81ECh. 1.2 - Prob. 82ECh. 1.3 - On a circle of radius 10 m, how long is an arc...Ch. 1.3 - A central angle in a circle of radius 8 is...Ch. 1.3 - You want to make an 80° angle by marking an arc on...Ch. 1.3 - If you roll a 1 -m-diameter wheel forward 30 cm...Ch. 1.3 - Copy and complete the following table of function...Ch. 1.3 - Copy and complete the following table of function...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - Prob. 10ECh. 1.3 - Prob. 11ECh. 1.3 - In Exercises 7–12, one of sin x, cos x, and tan x...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Graph the functions in Exercises 13–22. What is...Ch. 1.3 - Prob. 17ECh. 1.3 - Prob. 18ECh. 1.3 - Prob. 19ECh. 1.3 - Prob. 20ECh. 1.3 - Prob. 21ECh. 1.3 - Prob. 22ECh. 1.3 - Prob. 23ECh. 1.3 - Prob. 24ECh. 1.3 - Prob. 25ECh. 1.3 - Prob. 26ECh. 1.3 - Graph y = cos x and y = sec x together for ....Ch. 1.3 - Prob. 28ECh. 1.3 - Prob. 29ECh. 1.3 - Prob. 30ECh. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Use the addition formulas to derive the identities...Ch. 1.3 - Prob. 36ECh. 1.3 - What happens if you take B = A in the...Ch. 1.3 - Prob. 38ECh. 1.3 - In Exercises 39–42, express the given quantity in...Ch. 1.3 - In Exercises 39–42, express the given quantity in...Ch. 1.3 - Prob. 41ECh. 1.3 - Prob. 42ECh. 1.3 - Prob. 43ECh. 1.3 - Evaluate as .
Ch. 1.3 - Prob. 45ECh. 1.3 - Evaluate .
Ch. 1.3 - Using the Half-Angle Formulas
Find the function...Ch. 1.3 - Prob. 48ECh. 1.3 - Prob. 49ECh. 1.3 - Prob. 50ECh. 1.3 - Prob. 51ECh. 1.3 - Prob. 52ECh. 1.3 - Solving Trigonometric Equations
For Exercise...Ch. 1.3 - Solving Trigonometric Equations
For Exercise...Ch. 1.3 - Prob. 55ECh. 1.3 - Prob. 56ECh. 1.3 - Apply the law of cosines to the triangle in the...Ch. 1.3 - Prob. 58ECh. 1.3 - Prob. 59ECh. 1.3 - Prob. 60ECh. 1.3 - The law of sines The law of sines says that if a,...Ch. 1.3 - Prob. 62ECh. 1.3 - A triangle has side c = 2 and angles and .Find...Ch. 1.3 - Consider the length h of the perpendicular from...Ch. 1.3 - Refer to the given figure. Write the radius r of...Ch. 1.3 - Prob. 66ECh. 1.3 - Prob. 67ECh. 1.3 - Prob. 68ECh. 1.3 - Prob. 69ECh. 1.3 - Prob. 70ECh. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Choosing a Viewing Window
In Exercises 1–4, use...Ch. 1.4 - Prob. 4ECh. 1.4 - Prob. 5ECh. 1.4 - Prob. 6ECh. 1.4 - Prob. 7ECh. 1.4 - Prob. 8ECh. 1.4 - Prob. 9ECh. 1.4 - Prob. 10ECh. 1.4 - Prob. 11ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 15ECh. 1.4 - Prob. 16ECh. 1.4 - Prob. 17ECh. 1.4 - Prob. 18ECh. 1.4 - Prob. 19ECh. 1.4 - Prob. 20ECh. 1.4 - Prob. 21ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 23ECh. 1.4 - Finding a Viewing Window
In Exercises 5–30, find...Ch. 1.4 - Prob. 25ECh. 1.4 - Prob. 26ECh. 1.4 - Prob. 27ECh. 1.4 - Prob. 28ECh. 1.4 - Prob. 29ECh. 1.4 - Prob. 30ECh. 1.4 - Use graphing software to graph the functions...Ch. 1.4 - Prob. 32ECh. 1.4 - Prob. 33ECh. 1.4 - Prob. 34ECh. 1.4 - Prob. 35ECh. 1.4 - Use graphing software to graph the functions...Ch. 1 - Prob. 1GYRCh. 1 - What is the graph of a real-valued function of a...Ch. 1 - What is a piecewise-defined function? Give...Ch. 1 - What are the important types of functions...Ch. 1 - What is meant by an increasing function? A...Ch. 1 - What is an even function? An odd function? What...Ch. 1 - If f and g are real-valued functions, how are the...Ch. 1 - When is it possible to compose one function with...Ch. 1 - How do you change the equation y = f(x) to shift...Ch. 1 - Prob. 10GYRCh. 1 - Prob. 11GYRCh. 1 - Prob. 12GYRCh. 1 - Prob. 13GYRCh. 1 - Prob. 14GYRCh. 1 - Prob. 15GYRCh. 1 - Name three issues that arise when functions are...Ch. 1 - Express the area and circumference of a circle as...Ch. 1 - Prob. 2PECh. 1 - A point P in the first quadrant lies on the...Ch. 1 - Prob. 4PECh. 1 - In Exercises 5–8, determine whether the graph of...Ch. 1 - Prob. 6PECh. 1 - Prob. 7PECh. 1 - Prob. 8PECh. 1 - Prob. 9PECh. 1 - Prob. 10PECh. 1 - Prob. 11PECh. 1 - Prob. 12PECh. 1 - Prob. 13PECh. 1 - Prob. 14PECh. 1 - Prob. 15PECh. 1 - In Exercises 9–16, determine whether the function...Ch. 1 - Prob. 17PECh. 1 - Prob. 18PECh. 1 - In Exercises 19–32, find the (a) domain and (b)...Ch. 1 - Prob. 20PECh. 1 - Prob. 21PECh. 1 - In Exercises 19–32, find the (a) domain and (b)...Ch. 1 - Prob. 23PECh. 1 - Prob. 24PECh. 1 - Prob. 25PECh. 1 - Prob. 26PECh. 1 - Prob. 27PECh. 1 - Prob. 28PECh. 1 - Prob. 29PECh. 1 - Prob. 30PECh. 1 - Prob. 31PECh. 1 - Prob. 32PECh. 1 - State whether each function is increasing,...Ch. 1 - Prob. 34PECh. 1 - Prob. 35PECh. 1 - Prob. 36PECh. 1 - In Exercises 37 and 38, write a piecewise formula...Ch. 1 - In Exercises 37 and 38, write a piecewise formula...Ch. 1 - Prob. 39PECh. 1 - Prob. 40PECh. 1 - In Exercises 41 and 42, (a) write formulas for f ∘...Ch. 1 - Prob. 42PECh. 1 - For Exercises 43 and 44, sketch the graphs of f...Ch. 1 - Prob. 44PECh. 1 - Prob. 45PECh. 1 - Prob. 46PECh. 1 - Prob. 47PECh. 1 - Prob. 48PECh. 1 - Prob. 49PECh. 1 - Prob. 50PECh. 1 - Prob. 51PECh. 1 - Prob. 52PECh. 1 - Suppose the graph of g is given. Write equations...Ch. 1 - Prob. 54PECh. 1 - In Exercises 55–58, graph each function, not by...Ch. 1 - In Exercises 55–58, graph each function, not by...Ch. 1 - Prob. 57PECh. 1 - Prob. 58PECh. 1 - Prob. 59PECh. 1 - Prob. 60PECh. 1 - Prob. 61PECh. 1 - Prob. 62PECh. 1 - Prob. 63PECh. 1 - Prob. 64PECh. 1 - Prob. 65PECh. 1 - Prob. 66PECh. 1 - Prob. 67PECh. 1 - In Exercises 65–68, ABC is a right triangle with...Ch. 1 - Height of a pole Two wires stretch from the top T...Ch. 1 - Prob. 70PECh. 1 - Prob. 71PECh. 1 - Prob. 72PECh. 1 - Prob. 1AAECh. 1 - Prob. 2AAECh. 1 - Prob. 3AAECh. 1 - If g(x) is an odd function defined for all values...Ch. 1 -
Graph the equation |x| + |y| = 1 + x.
Ch. 1 -
Graph the equation y + |y| = x + |x|.
Ch. 1 - Prob. 7AAECh. 1 - Prob. 8AAECh. 1 - Prob. 9AAECh. 1 - Prob. 10AAECh. 1 - Show that if f is both even and odd, then f(x) = 0...Ch. 1 - Prob. 12AAECh. 1 - Prob. 13AAECh. 1 - Prob. 14AAECh. 1 -
An object’s center of mass moves at a constant...Ch. 1 - Prob. 16AAECh. 1 - Consider the quarter-circle of radius 1 and right...Ch. 1 - Let f(x) = ax + b and g(x) = cx + d. What...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Which sign makes the statement true? 9.4 × 102 9.4 × 101arrow_forwardDO these math problems without ai, show the solutions as well. and how you solved it. and could you do it with in the time spandarrow_forwardThe Cartesian coordinates of a point are given. (a) (-8, 8) (i) Find polar coordinates (r, 0) of the point, where r > 0 and 0 ≤ 0 0 and 0 ≤ 0 < 2π. (1, 0) = (r. = ([ (ii) Find polar coordinates (r, 8) of the point, where r < 0 and 0 ≤ 0 < 2π. (5, 6) = =([arrow_forward
- The Cartesian coordinates of a point are given. (a) (4,-4) (i) Find polar coordinates (r, e) of the point, where r > 0 and 0 0 and 0 < 0 < 2π. (r, 6) = X 7 (ii) Find polar coordinates (r, 8) of the point, where r < 0 and 0 0 < 2π. (r, 0) = Xarrow_forwardr>0 (r, 0) = T 0 and one with r 0 2 (c) (9,-17) 3 (r, 8) (r, 8) r> 0 r<0 (r, 0) = (r, 8) = X X X x x Warrow_forward74. Geometry of implicit differentiation Suppose x and y are related 0. Interpret the solution of this equa- by the equation F(x, y) = tion as the set of points (x, y) that lie on the intersection of the F(x, y) with the xy-plane (z = 0). surface Z = a. Make a sketch of a surface and its intersection with the xy-plane. Give a geometric interpretation of the result that dy dx = Fx F χ y b. Explain geometrically what happens at points where F = 0. yarrow_forward
- Example 3.2. Solve the following boundary value problem by ADM (Adomian decomposition) method with the boundary conditions მი მი z- = 2x²+3 дг Əz w(x, 0) = x² - 3x, θω (x, 0) = i(2x+3). ayarrow_forward6. A particle moves according to a law of motion s(t) = t3-12t2 + 36t, where t is measured in seconds and s is in feet. (a) What is the velocity at time t? (b) What is the velocity after 3 s? (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (e) What is the acceleration at time t? (f) What is the acceleration after 3 s?arrow_forwardConstruct a table and find the indicated limit. √√x+2 If h(x) = then find lim h(x). X-8 X-8 Complete the table below. X 7.9 h(x) 7.99 7.999 8.001 8.01 8.1 (Type integers or decimals rounded to four decimal places as needed.)arrow_forward
- Use the graph to find the following limits. (a) lim f(x) (b) lim f(x) X-1 x→1 (a) Find lim f(x) or state that it does not exist. Select the correct choice X-1 below and, if necessary, fill in the answer box within your choice. OA. lim f(x) = X-1 (Round to the nearest integer as needed.) OB. The limit does not exist. Qarrow_forwardOfficials in a certain region tend to raise the sales tax in years in which the state faces a budget deficit and then cut the tax when the state has a surplus. The graph shows the region's sales tax in recent years. Let T(x) represent the sales tax per dollar spent in year x. Find the desired limits and values, if they exist. Note that '01 represents 2001. Complete parts (a) through (e). Tax (in cents) T(X)4 8.5 8- OA. lim T(x)= cent(s) X-2007 (Type an integer or a decimal.) OB. The limit does not exist and is neither ∞ nor - ∞. Garrow_forwardDecide from the graph whether each limit exists. If a limit exists, estimate its value. (a) lim F(x) X➡-7 (b) lim F(x) X-2 (a) What is the value of the limit? Select the correct choice below and, if necessary, fill in the answer box within your choice. OA. lim F(x) = X-7 (Round to the nearest integer as needed.) OB. The limit does not exist. 17 Garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY