
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
11th Edition
ISBN: 9781305965720
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.1, Problem 33E
In Problems 31-34 find values of m so that the function y = emx is a solution of the given differential equation.
33. y″ − 5y′ + 6y = 0
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The scores of 8 students on the midterm exam and final exam were as follows.
Student
Midterm
Final
Anderson
98
89
Bailey
88
74
Cruz
87
97
DeSana
85
79
Erickson
85
94
Francis
83
71
Gray
74
98
Harris
70
91
Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary.
Test statistic: rs =
(a) Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%. Assume that the five planning scenarios in the Hauck Financial rvices model are equally likely to occur. Hint: Modify model (8.10)-(8.19). Define a variable d, for each scenario and let d₂ > R - R¸ with d ≥ 0. Then make the
objective function: Min
Let
FS = proportion of portfolio invested in the foreign stock mutual fund
IB = proportion of portfolio invested in the intermediate-term bond fund
LG = proportion of portfolio invested in the large-cap growth fund
LV = proportion of portfolio invested in the large-cap value fund
SG = proportion of portfolio invested in the small-cap growth fund
SV = proportion of portfolio invested in the small-cap value fund
R = the expected return of the portfolio
R = the return of the portfolio in years.
Min
s.t.
R₁
R₂
=
R₁
R
R5
=
FS + IB + LG + LV + SG + SV =
R₂
R
d₁ =R-
d₂z R-
d₂ ZR-
d₁R-
d≥R-
R =
FS, IB, LG, LV, SG, SV…
The Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units. Product is shipped to regional distribution centers located in Boston, Atlanta, and Houston. Because of an anticipated increase in demand, Martin-Beck plans to increase capacity by constructing a new plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas. The following is a linear program used to
determine which cities Martin-Beck should construct a plant in.
Let
y₁ = 1 if a plant is constructed in Detroit; 0 if not
y₂ = 1 if a plant is constructed in Toledo; 0 if not
y₂ = 1 if a plant is constructed in Denver; 0 if not
y = 1 if a plant is constructed in Kansas City; 0 if not.
The variables representing the amount shipped from each plant site to each distribution center are defined just as for a transportation problem.
*,, = the units shipped in thousands from plant i to distribution center j
i = 1 (Detroit), 2 (Toledo), 3 (Denver), 4 (Kansas City), 5 (St.Louis) and…
Chapter 1 Solutions
A First Course in Differential Equations with Modeling Applications (MindTap Course List)
Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...
Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - Verify that the piecewise-defined function...Ch. 1.1 - In Example 7 we saw that y=1(x)=25x2 and...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - Prob. 41ECh. 1.1 - In Problems 41 and 42 verify that the indicated...Ch. 1.1 - Prob. 43ECh. 1.1 - Make up a differential equation that you feel...Ch. 1.1 - What function do you know from calculus is such...Ch. 1.1 - What function (or functions) do you know from...Ch. 1.1 - The function y = sin x is an explicit solution of...Ch. 1.1 - Discuss why it makes intuitive sense to presume...Ch. 1.1 - In Problems 49 and 50 the given figure represents...Ch. 1.1 - In Problems 49 and 50 the given figure represents...Ch. 1.1 - The graphs of members of the one-parameter family...Ch. 1.1 - Prob. 52ECh. 1.1 - In Example 7 the largest interval I over which the...Ch. 1.1 - In Problem 21 a one-parameter family of solutions...Ch. 1.1 - Discuss, and illustrate with examples, how to...Ch. 1.1 - The differential equation x(y)2 4y 12x3 = 0 has...Ch. 1.1 - Prob. 57ECh. 1.1 - Find a linear second-order differential equation...Ch. 1.1 - Prob. 59ECh. 1.1 - Prob. 60ECh. 1.1 - Consider the differential equation dy/dx = y(a ...Ch. 1.1 - Consider the differential equation y = y2 + 4. (a)...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - Prob. 8ECh. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - (a) By inspection find a one-parameter family of...Ch. 1.2 - (a) Verify that y = tan (x + c) is a one-parameter...Ch. 1.2 - (a) Verify that y = 1 /(x + c) is a one-parameter...Ch. 1.2 - (a) Show that a solution from the family in part...Ch. 1.2 - (a) Verify that 3x2 y2 = c is a one-parameter...Ch. 1.2 - (a) Use the family of solutions in part (a) of...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Find a function whose graph at each point (x, y)...Ch. 1.2 - Prob. 46ECh. 1.2 - Consider the initial-value problem y = x 2y, y(0)...Ch. 1.2 - Show that x=0y1t3+1dt is an implicit solution of...Ch. 1.2 - Prob. 49ECh. 1.2 - Suppose that the first-order differential equation...Ch. 1.2 - The functions y(x)=116x4, x and...Ch. 1.3 - Under the same assumptions that underlie the model...Ch. 1.3 - The population model given in (1) fails to take...Ch. 1.3 - Using the concept of net rate introduced in...Ch. 1.3 - Modify the model in Problem 3 for net rate at...Ch. 1.3 - A cup of coffee cools according to Newtons law of...Ch. 1.3 - The ambient temperature Tm in (3) could be a...Ch. 1.3 - Suppose a student carrying a flu virus returns to...Ch. 1.3 - At a time denoted as t = 0 a technological...Ch. 1.3 - Suppose that a large mixing tank initially holds...Ch. 1.3 - Suppose that a large mixing tank initially holds...Ch. 1.3 - What is the differential equation in Problem 10,...Ch. 1.3 - Generalize the model given in equation (8) of this...Ch. 1.3 - Suppose water is leaking from a tank through a...Ch. 1.3 - The right-circular conical tank shown in Figure...Ch. 1.3 - A series circuit contains a resistor and an...Ch. 1.3 - A series circuit contains a resistor and a...Ch. 1.3 - For high-speed motion through the airsuch as the...Ch. 1.3 - A cylindrical barrel s feet in diameter of weight...Ch. 1.3 - After a mass m is attached to a spring, it...Ch. 1.3 - In Problem 19, what is a differential equation for...Ch. 1.3 - A small single-stage rocket is launched vertically...Ch. 1.3 - In Problem 21, the mass m(t) is the sum of three...Ch. 1.3 - By Newtons universal law of gravitation the...Ch. 1.3 - Suppose a hole is drilled through the center of...Ch. 1.3 - Learning Theory In the theory of learning, the...Ch. 1.3 - Forgetfulness In Problem 25 assume that the rate...Ch. 1.3 - Infusion of a Drug A drug is infused into a...Ch. 1.3 - Tractrix A motorboat starts at the origin and...Ch. 1.3 - Reflecting surface Assume that when the plane...Ch. 1.3 - Reread Problem 45 in Exercises 1.1 and then give...Ch. 1.3 - Prob. 31ECh. 1.3 - Prob. 32ECh. 1.3 - Prob. 33ECh. 1.3 - Rotating Fluid As shown in Figure 1.3.24(a), a...Ch. 1.3 - Prob. 35ECh. 1.3 - Prob. 36ECh. 1.3 - Let It snow The snowplow problem is a classic and...Ch. 1.3 - Population Dynamics Suppose that dP/dt = 0.15 P(t)...Ch. 1.3 - Radioactive Decay Suppose that dA/dt = 0.0004332...Ch. 1.3 - Reread this section and classify each mathematical...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 13 and 14 determine by inspection at...Ch. 1 - In Problems 13 and 14 determine by inspection at...Ch. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - (a) Give the domain of the function y = x2/3. (b)...Ch. 1 - (a) Verify that the one-parameter family y2 2y =...Ch. 1 - The function y = x 2/x is a solution of the DE xy...Ch. 1 - Suppose that y(x) denotes a solution of the...Ch. 1 - A differential equation may possess more than one...Ch. 1 - What is the slope of the tangent line to the graph...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - The graph of a solution of a second-order...Ch. 1 - A tank in the form of a right-circular cylinder of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Consider the following mixed-integer linear program. Max 3x1 + 4x2 s.t. 4x1 + 7x2 ≤ 28 8x1 + 5x2 ≤ 40 x1, x2 ≥ and x1 integer (a) Graph the constraints for this problem. Indicate on your graph all feasible mixed-integer solutions. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several horizontal lines are on the graph. The series of line segments connect the approximate points (0, 4), (3.889, 1.778), and (5, 0). The region is above the horizontal axis, to the right of the vertical axis, and below the line segments. At each integer value between 0 and 4 on the vertical axis, a horizontal line extends out from the vertical axis to the series of connect line segments. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several…arrow_forwardConsider the nonlinear optimization model stated below. Min s.t. 2x²-18x + 2XY + y² - 14Y + 53 x + 4Y ≤ 8 (a) Find the minimum solution to this problem. |at (X, Y) = (b) If the right-hand side of the constraint is increased from 8 to 9, how much do you expect the objective function to change? Based on the dual value on the constraint X + 4Y ≤ 8, we expect the optimal objective function value to decrease by (c) Resolve the problem with a new right-hand side of the constraint of 9. How does the actual change compare with your estimate? If we resolve the problem with a new right-hand-side of 9 the new optimal objective function value is| , so the actual change is a decrease of rather than what we expected in part (b).arrow_forwardStatement:If 2 | a and 3| a, then 6 a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forward
- Statement: If 4 | a and 6 | a, then 24 | a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forward2) dassify each critical point of the given plane autovers system x'=x-2x²-2xy y' = 4y-Sy³-7xyarrow_forwardEvaluate the next integralarrow_forward
- 1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative maximum and minimum values of f. (a) f(x) = x² - 2x²+3 (b) f(x) = (x+1)5-5x-2 (c) f(x) = x2 x-9 2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f. (a) f(x) = x - 2x²+3 (b) g(x) = x³- x (c) f(x)=x-6x3 + x-8 3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test. (a) f(x)=1+3x² - 2x3 (b) g(x) = 2x3 + 3x² - 12x-4arrow_forward24.2. Show that, for any constant zo Є C, (a). e* = e²o Σ j=0 (2 - 20); j! |z|arrow_forwardQuestion 10 (5 points) (07.04 MC) Vectors u and v are shown in the graph. -12-11 -10 -9 -8 -7 -6 -5 What is proju? a -6.5i - 4.55j b -5.2i+2.6j с -4.7631 3.334j d -3.81i+1.905j < + 10 6 5 4 3 2 -3 -2 -10 1 -1 -2 -3 u -4 -5 -6 -7arrow_forward25.4. (a). Show that when 0 < || < 4, 1 1 8 zn 4z - z2 4z +Σ 4n+2* (b). Show that, when 0 < |z1|<2, n=() 2 1 8 (z - 1)(z - 3) - 3 2(z - 1) 3 Σ (2-1)" 27+2 n=0 (c). Show that, when 2<|z|< ∞, 1 z4+4z2 -*()*. n=0arrow_forwardFind the Soultion to the following dy differential equation using Fourier in transforms: = , хуо, ухо according to the terms: lim u(x,y) = 0 x18 lim 4x (x,y) = 0 x14 2 u (x, 0) = =\u(o,y) = -y لوarrow_forward. Expand sinh z in Taylor's series at zo = πi, and show that lim sinh: καπί κ - п - - 1.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY