The velocity of the system just after the collision using Newton’s second law and the comparison of the answer with the result of Example 11.4.

Answer to Problem 32PQ
The velocity of the system just after the collision using Newton’s second law is
Explanation of Solution
The free-body diagram of the system is shown in figure 1.
The two-train system only moves in
Write the expression for the Newton’s second law in
Here,
Refer to figure 1. The only force acting in
Write the equation for
Here,
Put the above equation in equation (I).
The kinetic friction is proportional to the normal force and the normal force is in turn equal to the weight of the train.
Write the expression for
Here,
Write the equation for
Here,
Put the above equation in equation (III).
Put the above equation in equation (II) and rewrite it for
Initially only the freight train has momentum. Assume that the two trains move together with velocity
Here,
Rewrite the above equation for
Now consider the motion of the system just after the collision to the moment it comes to rest.
Replace
The speed of the two-train system as it comes to rest is zero.
Write the expression for the final speed of the system as it comes to rest.
Here,
Write the constant-acceleration equation of motion.
Here,
Put equations (IV) to (VI) in the above equation and rewrite it for
To find the range of possible initial freight train velocities, the extreme values of the coefficient of kinetic friction must be used.
Write the equation for
Here,
Conclusion:
Given that the value of
Substitute
Substitute
Here,
The system moves in
Here,
Substitute
Substitute
Here,
It is given that the train crosses the red signal at a speed of
Since the train passed the red signal with the speed of
Write the expression for the maximum velocity of the system.
Here,
Substitute
The range of the speed of the two-train system is
Therefore, the velocity of the system just after the collision using Newton’s second law is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forwardFor an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forward
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





