EBK NUTRITION
15th Edition
ISBN: 9780357390672
Author: Sizer
Publisher: CENGAGE CO
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 2CT
Summary Introduction
Interpretation:
Determine how SNPs may cause disease.
Concept Introduction:
The SNPs or the single
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 11 Solutions
EBK NUTRITION
Ch. 11 - Complementary and alternative medicines (CAM)...Ch. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - Prob. 1SCCh. 11 - Prob. 2SCCh. 11 - Prob. 3SCCh. 11 - Prob. 4SCCh. 11 - Men suffer more often from heart attacks than...Ch. 11 - Smoking powerfully raises the risk for CVD in men...Ch. 11 - Which of the following minerals may help to...
Knowledge Booster
Similar questions
- Can you postulate a reason or reasons why children with Down syndrome are 20 times more likely to develop leukemia than children in the general population?arrow_forwardGive examples of the different classes of mutations that affect the base sequence of DNA in protein encoding genes and explain the effects that each has on the polypeptide produced.arrow_forwardWhat is the genetic basis and phenotype for each of the following disorders (use proper genetic notation)? a. Edwards syndrome b. Patau syndrome c. Klinefelter syndrome d. Down syndromearrow_forward
- How can genomics be used to predict disease risk and treatment options?arrow_forwardA region on chromosome 6 has been linked to schizophrenia, but researchers have not found a specific gene associated with this disease. What steps would be necessary to locate the gene?arrow_forwardAlthough it is well known that X-rays cause mutations, they are routinely used to diagnose medical problems, including potential tumors, broken bones, and dental cavities. Why is this done? What precautions need to be taken?arrow_forward
- Describe how seroconversion works in HIV disease.arrow_forwardJames sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do James and Sally have any guarantees that the tests and recommendations are scientifically valid?arrow_forwardJames sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think that companies should be allowed to market such tests directly to the public, or do you believe that only a physician should be able to order them?arrow_forward
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. What kinds of regulations, if any, should be in place to ensure that the results of these tests are not abused?arrow_forwardJames sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think parents should be able to order such a test for their children? What if the test indicates that a child is at risk for a disease for which there is no known cure?arrow_forwardGiven the karyotype shown at right, is this a male or a female? Normal or abnormal? What would the phenotype of this individual be?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Nutrition: Concepts and Controversies - Standalo...Health & NutritionISBN:9781305627994Author:Frances Sizer, Ellie WhitneyPublisher:Brooks Cole
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningCase Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:CengageLifetime Physical Fitness & WellnessHealth & NutritionISBN:9781337677509Author:HOEGERPublisher:Cengage
Nutrition: Concepts and Controversies - Standalo...
Health & Nutrition
ISBN:9781305627994
Author:Frances Sizer, Ellie Whitney
Publisher:Brooks Cole
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Case Studies In Health Information Management
Biology
ISBN:9781337676908
Author:SCHNERING
Publisher:Cengage
Lifetime Physical Fitness & Wellness
Health & Nutrition
ISBN:9781337677509
Author:HOEGER
Publisher:Cengage