
Elementary Technical Mathematics
11th Edition
ISBN: 9781285199191
Author: Dale Ewen, C. Robert Nelson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 22R
Simplify:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
r
nt
Use the compound interest formula, A (t) = P(1 + 1)".
An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi-
annually. Round all answers to the nearest dollar.
a. What will the account be worth in 10 years? $
b. What if the interest were compounding monthly? $
c. What if the interest were compounded daily (assume 365 days in a year)? $
Chapter 11 Solutions
Elementary Technical Mathematics
Ch. 11.1 - Solve each equation: x2+x=12Ch. 11.1 - Solve each equation: x23x+2=0Ch. 11.1 - Solve each equation: x2+x20=0Ch. 11.1 - Prob. 4ECh. 11.1 - Solve each equation: x22=xCh. 11.1 - Solve each equation: x215x=54Ch. 11.1 - Solve each equation: x21=0Ch. 11.1 - Solve each equation: 16n2=49Ch. 11.1 - Solve each equation: x249=0Ch. 11.1 - Prob. 10E
Ch. 11.1 - Solve each equation: w2+5w+6=0Ch. 11.1 - Solve each equation: x26x=0Ch. 11.1 - Prob. 13ECh. 11.1 - Solve each equation: c2+2=3cCh. 11.1 - Solve each equation: n26n60=0Ch. 11.1 - Solve each equation: x217x+16=0Ch. 11.1 - Solve each equation: 9m=m2Ch. 11.1 - Solve each equation: 6n215n=0Ch. 11.1 - Solve each equation: x2=108+3xCh. 11.1 - Solve each equation: x2x=42Ch. 11.1 - Solve each equation: c2+6c=16Ch. 11.1 - Solve each equation: 4x2+4x3=0Ch. 11.1 - Solve each equation: 10x2+29x+10=0Ch. 11.1 - Solve each equation: 2x2=17x8Ch. 11.1 - Solve each equation: 4x2=25Ch. 11.1 - Solve each equation: 25x=x2Ch. 11.1 - Solve each equation: 9x2+16=24xCh. 11.1 - Solve each equation: 24x2+10=31xCh. 11.1 - Solve each equation: 3x2+9x=0Ch. 11.1 - A rectangle is 5 ft longer than it is wide. (See...Ch. 11.1 - The area of a triangle is 66 m2, and its base is 1...Ch. 11.1 - A rectangle is 9 ft longer than it is wide, and...Ch. 11.1 - A heating duct has a rectangular cross section...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Prob. 4ECh. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Find the value of a, b, and c in each equation:...Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula....Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.2 - Solve each equation using the quadratic formula...Ch. 11.3 - A variable voltage in an electrical circuit is...Ch. 11.3 - A variable electric current is given by i=t27t+12,...Ch. 11.3 - A rectangular piece of sheet metal is 4 ft longer...Ch. 11.3 - A hole in the side of a large metal tank needs to...Ch. 11.3 - The area of the wings of a small Cessna is 175...Ch. 11.3 - The perimeter of a rectangle is 46 cm, and its...Ch. 11.3 - The perimeter of a rectangle is 160 m, and its...Ch. 11.3 - A rectangular field is fenced in by using a river...Ch. 11.3 - The dimensions of a doorway are 3 ft by 7 ft 6 in....Ch. 11.3 - A square, 4 in. on a side, is cut out of each...Ch. 11.3 - A square is cut out of each corner of a...Ch. 11.3 - The area of a rectangular lot 80 m by 100 m is to...Ch. 11.3 - Prob. 13ECh. 11.3 - A border of uniform width is printed on a page...Ch. 11.3 - A company needs to build a ware house with...Ch. 11.3 - A 2000-ft2 storage building 9 ft high is needed to...Ch. 11.3 - A landscaper is laying sod in a rectangular front...Ch. 11.3 - A rectangular forest plot contains 120 acres and...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.4 - Draw the graph of each equation and label each...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Express each number in terms of j (when necessary,...Ch. 11.5 - Simplify: j3Ch. 11.5 - Simplify: j6Ch. 11.5 - Simplify: j13Ch. 11.5 - Simplify: j16Ch. 11.5 - Simplify: j19Ch. 11.5 - Simplify: j31Ch. 11.5 - Simplify: j24Ch. 11.5 - Simplify: j26Ch. 11.5 - Simplify: j38Ch. 11.5 - Simplify: j81Ch. 11.5 - Simplify: 1jCh. 11.5 - Simplify: 1j6Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Determine the natural of the roots of each...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11.5 - Solve each quadratic equation using the quadratic...Ch. 11 - Prob. 1RCh. 11 - Solve for x:3x(x2)=0Ch. 11 - Solve each equation by factoring: x24=0Ch. 11 - Solve each equation by factoring: x2x=6Ch. 11 - Solve each equation by factoring: 5x26x=0Ch. 11 - Solve each equation by factoring: x23x28=0Ch. 11 - Solve each equation by factoring: x214x=45Ch. 11 - Solve each equation by factoring: x2183x=0Ch. 11 - Solve each equation by factoring: 3x2+20x+32=0Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - The area of a piece of plywood is 36 ft2. Its...Ch. 11 - A variable electric current is given by the...Ch. 11 - Draw the graph of each equation and label each...Ch. 11 - Draw the graph of each equation and label each...Ch. 11 - Express each number in terms of j: 36Ch. 11 - Express each number in terms of j: 73Ch. 11 - Simplify: j12Ch. 11 - Simplify: j27Ch. 11 - Determine the nature of the roots of each...Ch. 11 - Determine the nature of the roots of each...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - A solar-heated house has a rectangular heat...Ch. 11 - A rectangular opening is 15 in. wide and 26 in....Ch. 11 - Solve each equation: x2=64Ch. 11 - Solve each equation: x28x=0Ch. 11 - Solve each equation: x2+9x36=0Ch. 11 - Solve each equation: 12x2+4x=1Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Solve each equation using the quadratic formula...Ch. 11 - Prob. 7TCh. 11 - Prob. 8TCh. 11 - Prob. 9TCh. 11 - Prob. 10TCh. 11 - Draw the graph of y=x28x15 and label the vertex.Ch. 11 - Draw the graph of y=2x2+8x+11 and label the...Ch. 11 - Express each number in terms of j: 16Ch. 11 - Express each number in terms of j: 29Ch. 11 - Simplify: j9Ch. 11 - Simplify: j28Ch. 11 - Determine the nature of the roots of 3x2x+4=0...Ch. 11 - One side of a rectangle is 5 cm more that another....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- The following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- how to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forward
- Let D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardplease work out more details give the solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Intermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,


Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning

ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY