
To describe: Two datasets for each level of the four levels of measurements.

Answer to Problem 1TY
Nominal level of measurement:
Dataset 1:
Student | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Gender | Female | Female | Male | Male | Male | Female | Male | Female | Female | Male |
Dataset 2:
The dataset shows the nationality of 10 employees:
Indian, American, Nigerian, Sri Lankan, Pakistani, Russian, German, Tibetan, Brazilian, Argentines.
Ordinal level of measurement:
Dataset 1:
The dataset shows the top 10 football teams around the world:
Netherland, Brazil, England, North Korea, Germany, Portugal, Spain, Italy, Sweden and Chile.
Dataset 2:
The performance rating for an electronic gadget is given below:
3, 5, 2, 1, 4, 3, 5, 2, 1 and 4.
Interval level of measurement:
Dataset 1:
The dataset shows the temperatures measured in degrees during the months of May:
32, 34, 35, 30, 31.5, 29.2, 32.5, 30.5, 28.8 and 35.7.
Dataset 2:
The temperatures measured in Fahrenheit for 10 patients are given below:
101.5, 100, 102.6, 103, 100.8, 108, 106.3, 104.3, 99.5 and 106.
Ratio level of measurement:
Dataset 1:
The height of 10 students measured in centimetres is given below:
172, 170.5, 173, 185, 165.7, 150.2, 177, 183.8, 178.4 and 170.
Dataset 2:
The dataset shows the number of mistakes occurred while printing 5 books:
5, 10, 7, 8 and 9.
Explanation of Solution
Justification:
Level of measurements:
Nominal level of measurement:
If the data takes labels, names or other characteristics where mathematical operations are impossible then the level of measurement is nominal.
Ordinal level of measurement:
A data takes ordinal level of measurement if the entries or numerical values can be arranged according some order or rank. But, the differences between the values are not meaningful.
Interval level of measurement:
It consists of ordered values and also contains one more property of having equal distances or intervals between the values. Interval scale does not contain the values of absolute zero. In this level of measurement, the difference between the numbers is meaningful.
Ratio level of measurement:
It also consists of ordered values and equal distances or intervals between the values with one more property, that it contains absolute zero point in the values. In this level of measurement ratio of the numbers is meaningful.
Examples for Nominal data:
Dataset 1:
The dataset gender of the students
The dataset deals with the gender of students in a class. The gender (male and female) takes non-numerical entities where mathematical operations are not possible.
Dataset 2:
The dataset shows the nationality of 10 employees
The dataset deals with the nationality of employees in a company. The nationality takes non-numerical entities where mathematical operations are not possible.
Examples for Ordinal data:
Dataset 1:
The dataset shows the top 10 football teams around the world:
The dataset deals with the top 10 football teams in the world. The top 10 list takes non-numerical entities and the list can be arranged in some order. But doing mathematical calculations are impossible. Thus, the data follows ordinal level of measurement.
Dataset 2:
The performance rating for an electronic gadget is given below:
The respondents were asked to rate the performance of an electronic gadget in a 5 point scale. The rating can be arranged in order but performing mathematical calculations makes no sense. Thus, the data follows ordinal level of measurement.
Examples for interval data:
Dataset 1:
The dataset shows the temperatures measured in degrees during the months of May:
The dataset deals with the average temperatures measured during the months of May. The values can be arranged in order. There is no absolute zero on this scale. That is, a zero value represents the starting point on this scale. Finding difference between two values is also meaningful. Thus, the data follows interval level of measurement.
Dataset 2:
The temperatures measured in Fahrenheit for 10 patients are given below:
The dataset deals with the average temperature measured for 10 patients. The values can be arranged in order. There is no absolute zero on this scale. That is, a zero value represents the starting point on this scale. Finding difference between two values is also meaningful. Thus, the data follows interval level of measurement.
Examples for ratio data:
Dataset 1:
The height of 10 students measured in centimetres is given below:
The dataset deals with the sample height of students in a college. The values can be arranged in order. There is absolute zero on this scale. Finding difference between two values is also meaningful. A value can be expressed a multiple of another value. Thus, the data follows ratio level of measurement.
Dataset 2:
The dataset shows the number of mistakes occurred while printing 5 books:
The dataset deals with the number of mistakes occurred while printing 5 books. The values can be arranged in order. There is absolute zero on this scale. Finding difference between two values is also meaningful. Thus, the data follows ratio level of measurement.
Want to see more full solutions like this?
Chapter 1 Solutions
Elementary Statistics: Picturing the World (6th Edition)
- In a group of 40 people, 35% have never been abroad. Two people are selected at random without replacement and are asked about their past travel experience. a. Is this a binomial experiment? Why or why not? What is the probability that in a random sample of 2, no one has been abroad? b. What is the probability that in a random sample of 2, at least one has been abroad?arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardTo help consumers in purchasing a laptop computer, Consumer Reports calculates an overall test score for each computer tested based upon rating factors such as ergonomics, portability, performance, display, and battery life. Higher overall scores indicate better test results. The following data show the average retail price and the overall score for ten 13-inch models (Consumer Reports website, October 25, 2012). Brand & Model Price ($) Overall Score Samsung Ultrabook NP900X3C-A01US 1250 83 Apple MacBook Air MC965LL/A 1300 83 Apple MacBook Air MD231LL/A 1200 82 HP ENVY 13-2050nr Spectre XT 950 79 Sony VAIO SVS13112FXB 800 77 Acer Aspire S5-391-9880 Ultrabook 1200 74 Apple MacBook Pro MD101LL/A 1200 74 Apple MacBook Pro MD313LL/A 1000 73 Dell Inspiron I13Z-6591SLV 700 67 Samsung NP535U3C-A01US 600 63 a. Select a scatter diagram with price as the independent variable. b. What does the scatter diagram developed in part (a) indicate about the relationship…arrow_forward
- To the Internal Revenue Service, the reasonableness of total itemized deductions depends on the taxpayer’s adjusted gross income. Large deductions, which include charity and medical deductions, are more reasonable for taxpayers with large adjusted gross incomes. If a taxpayer claims larger than average itemized deductions for a given level of income, the chances of an IRS audit are increased. Data (in thousands of dollars) on adjusted gross income and the average or reasonable amount of itemized deductions follow. Adjusted Gross Income ($1000s) Reasonable Amount ofItemized Deductions ($1000s) 22 9.6 27 9.6 32 10.1 48 11.1 65 13.5 85 17.7 120 25.5 Compute b1 and b0 (to 4 decimals).b1 b0 Complete the estimated regression equation (to 2 decimals). = + x Predict a reasonable level of total itemized deductions for a taxpayer with an adjusted gross income of $52.5 thousand (to 2 decimals). thousand dollarsWhat is the value, in dollars, of…arrow_forwardK The mean height of women in a country (ages 20-29) is 63.7 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume σ = 2.68. The probability that the mean height for the sample is greater than 64 inches is (Round to four decimal places as needed.)arrow_forwardIn a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of 69.6 inches and a standard deviation of 4.0 inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 68 inches. The probability that the study participant selected at random is less than 68 inches tall is 0.4. (Round to four decimal places as needed.) 20 2arrow_forward
- PEER REPLY 1: Choose a classmate's Main Post and review their decision making process. 1. Choose a risk level for each of the states of nature (assign a probability value to each). 2. Explain why each risk level is chosen. 3. Which alternative do you believe would be the best based on the maximum EMV? 4. Do you feel determining the expected value with perfect information (EVWPI) is worthwhile in this situation? Why or why not?arrow_forwardQuestions An insurance company's cumulative incurred claims for the last 5 accident years are given in the following table: Development Year Accident Year 0 2018 1 2 3 4 245 267 274 289 292 2019 255 276 288 294 2020 265 283 292 2021 263 278 2022 271 It can be assumed that claims are fully run off after 4 years. The premiums received for each year are: Accident Year Premium 2018 306 2019 312 2020 318 2021 326 2022 330 You do not need to make any allowance for inflation. 1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method. (b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method. 2. Comment on the differences in the reserves produced by the methods in Part 1.arrow_forwardYou are provided with data that includes all 50 states of the United States. Your task is to draw a sample of: o 20 States using Random Sampling (2 points: 1 for random number generation; 1 for random sample) o 10 States using Systematic Sampling (4 points: 1 for random numbers generation; 1 for random sample different from the previous answer; 1 for correct K value calculation table; 1 for correct sample drawn by using systematic sampling) (For systematic sampling, do not use the original data directly. Instead, first randomize the data, and then use the randomized dataset to draw your sample. Furthermore, do not use the random list previously generated, instead, generate a new random sample for this part. For more details, please see the snapshot provided at the end.) Upload a Microsoft Excel file with two separate sheets. One sheet provides random sampling while the other provides systematic sampling. Excel snapshots that can help you in organizing columns are provided on the next…arrow_forward
- The population mean and standard deviation are given below. Find the required probability and determine whether the given sample mean would be considered unusual. For a sample of n = 65, find the probability of a sample mean being greater than 225 if μ = 224 and σ = 3.5. For a sample of n = 65, the probability of a sample mean being greater than 225 if μ=224 and σ = 3.5 is 0.0102 (Round to four decimal places as needed.)arrow_forward***Please do not just simply copy and paste the other solution for this problem posted on bartleby as that solution does not have all of the parts completed for this problem. Please answer this I will leave a like on the problem. The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardThe data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





