
Concept explainers
Why did researchers initially believe that the genetic material was composed of proteins?
- a. Proteins are more biochemically complex than DNA.
- b. Proteins are found only in the nucleus, but DNA is found in many areas of the cell.
- c. Proteins are much larger molecules and can store more information than DNA.
- d. all of the above
- e. both a and c

Introduction: Every organism present in nature contains genetic material. There are two types of genetic material and they are DNA and RNA. DNA stands for “deoxyribonucleic acid” and RNA represents “ribonucleic acid”. In eukaryotes, the genetic material is enclosed by a well-defined nuclear membrane. However, prokaryotic organisms lack a nuclear membrane.
Answer to Problem 1TY
Correct answer: The researchers initially believed that the genetic material was composed of proteins because proteins are more biochemically complex than DNA. Hence, the correct answer is option a.
Explanation of Solution
Reason for correct answer:
The scientists in the earlier time have a great misconception that protein was the genetic material. They believed this because they were aware of the involvement of the protein in most of the cellular activities. The variety of proteins also paved way to this misconception. They were not much aware of DNA. They believed that since proteins are more biochemically complex than DNA, it must be the genetic material.
Option a. is given as “Proteins are more biochemically complex than DNA”.
Proteins are more biochemically complex than DNA. Therefore, the researchers initially believed that the genetic material was composed of proteins. Hence, the correct answer is option a.
Reasons for incorrect answer:
Option b. is given as, “Proteins are found only in the nucleus, but DNA is found in many areas of the cell”.
The nucleus contains both DNA and proteins (histones). It is protein and not DNA that is found in many areas of the cell. Proteins are present in every part of the cell, such as in cytoplasm, organelle, nucleus, and cell membrane. However, DNA is the constituent of the nucleus only. Hence, option b. is incorrect.
Option c. is given as, “Proteins are much larger molecules and can store more information than DNA”.
The earlier scientists believed that proteins are the major constituents of the genetic material. They had this misconception on the basis that proteins are more biochemically complex than DNA. This belief of the researchers had no association with the larger size of proteins. Hence, option c. is incorrect.
Option d. is given as, “all of the above”.
The earlier scientist believed that the genetic material was composed of proteins as proteins are more biochemically complex than DNA. They did not make this conception due to the other reasons mentioned in option b. and c. Hence, option d. is incorrect.
Option e. is given as, “both a. and c”.
The option a. correctly describes the reason due to which the researchers initially believed that the genetic material was composed of proteins and not DNA. However, the option c. has no role in this misconception. Hence, option e. is incorrect.
Hence, the options b., c., d., and e. are incorrect.
Therefore, the reason that the researchers initially believed that the genetic material was composed of proteins was that proteins are more biochemically complex than the DNA.
Want to see more full solutions like this?
Chapter 11 Solutions
Biology
Additional Science Textbook Solutions
Physics for Scientists and Engineers
The Cosmic Perspective (8th Edition)
Laboratory Manual For Human Anatomy & Physiology
SEELEY'S ANATOMY+PHYSIOLOGY
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
- Normal dive (for diving humans) normal breathing dive normal breathing Oz level CO2 level urgent need to breathe Oz blackout zone high CO2 triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. How might the location and slope of the O₂ line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO₂ line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardforaging/diet type teeth tongue stomach intestines cecum Insectivory numerous, spiky, incisors procumbentExample: moleExample: shrew -- simple short mostly lacking Myrmecophagy absent or reduced in numbers, peg-likeExample: tamandua anteater extremely long simple, often roughened short small or lacking Terrestrial carnivory sharp incisors; long, conical canines; often carnassial cheek teeth; may have crushing molarsExample: dog -- simple short small Aquatic carnivory homodont, spiky, numerousExample: common dolphin -- simple or multichambered (cetaceans only) variable small or absent Sanguinivory very sharp upper incisors; reduced cheek teethExample: vampire bat grooved tubular, highly extensible long small or lacking Herbivory (except nectivores) incisors robust or absent; canines reduced or absent; diastema; cheek teeth enlarged with complex occlusal surfacesExample: beaver -- simple (hindgut fermenters) or multichambered (ruminants) long large Filter feeding none…arrow_forward3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 པར『ན་ cm 30 Species B 4/3, 1/1, 2/2, 4/4 cm 10 Species C 0/4, 0/0,3/3, 3/3 020arrow_forward
- 3. Shown below is the dental formula and digestive tract anatomy of three mammalian species (A, B, and C). What kind of diet would you expect each species to have? Support your answers with what you can infer from the dental formula and what you can see in the diagram. Broadly speaking, what accounts for the differences? Species A 3/3, 1/1, 4/4, 3/3 cm 30 Species B 0/4, 0/0, 3/3, 3/3 cm 10 Species C 4/3, 1/1, 2/2, 4/4 E 0 cm 20 AILarrow_forwardNormal dive (for diving humans) normal breathing dive normal breathing Oz level CO₂ level urgent need to breathe Oz blackout zone high CO₂ triggers breathing 6. This diagram shows rates of oxygen depletion and carbon dioxide accumulation in the blood in relation to the levels needed to maintain consciousness and trigger the urgent need to breathe in diving humans. • How might the location and slope of the O2 line differ for diving marine mammals such as whales and dolphins? • How might the location and slope of the CO2 line differ for diving marine mammals such as whales and dolphins? • • Draw in predicted lines for O2 and CO2, based on your reasoning above. How might the location of the Urgent Need to Breathe line and the O2 Blackout Zone line differ for diving marine mammals? What physiological mechanisms account for each of these differences, resulting in the ability of marine mammals to stay submerged for long periods of time?arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- If a bacterium using aerobic respiration was to degrade one small protein molecule into 8 molecules of pyruvic acid, how many ATP would that cell make? Assume there is no other carbon source. Units cannot be entered in this style of question but the units of your answer should be in molecules of ATP.arrow_forwardIf a bacterium using aerobic respiration was to degrade a 30 mM solution of citric acid, how many ATP would that cell make? Assume no other carbon source is available. Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forwardHow much ATP will be produced during the following metabolic scenario: Aerobic respiration of a 5mM lipid solution that is made up of one glycerol and an 8-carbon fatty acid and 12-carbon fatty acid. Recall that when glycerol breaks down to Glyceraldehyde-3-phosphate it costs one ATP but your get an extra FADH2. Every two carbons of a fatty acid break down to one acetyl-CoA. (pathways will be provided on the exam) Units cannot be entered in this style of question but the units of your answer should be in mM of ATP.arrow_forward
- When beta-lactamase was isolated from Staphylcoccus aureus and treated with a phosphorylating agent, only the active site, serine was phosphorylated. Additionally, the serine was found to constitute 0.35% (by weight) of this beta-lactamase enzyme. Using this, calculate the molecular weight of this enzyme and estimate the number of amino acids present in the polypeptide.arrow_forwardBased on your results from the Mannitol Salt Agar (MSA) media, which of your bacteria were mannitol fermenters and which were not mannitol fermenters?arrow_forwardhelp tutor pleasearrow_forward
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning





