EBK STARTING OUT WITH PROGRAMMING LOGIC
5th Edition
ISBN: 8220106960493
Author: GADDIS
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Chapter 11, Problem 1TF
Explanation of Solution
Menu:
A menu-driven
- The list of actions, which is displayed on the screen is referred as menu.
Decision Structure:
Once the user selects an action from a menu, the program must use a decision structure to complete an action established on that selection.
- The most commonly used decision structure in all languages “case structure”.
- Similarly, nested If-Then-Else statement and If-Then-Else If statement area also used to make a decision structure in the program.
Example:
Consider the following C++program, which uses the “if then else” decision structure for a menu driven program as follow as:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refer to page 10 for problems on parsing.
Instructions:
•
Design a top-down parser for the given grammar (e.g., recursive descent or LL(1)).
• Compute the FIRST and FOLLOW sets and construct the parsing table if applicable.
• Parse a sample input string and explain the derivation step-by-step.
Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]
Refer to page 20 for problems related to finite automata.
Instructions:
•
Design a deterministic finite automaton (DFA) or nondeterministic finite automaton (NFA) for the
given language.
• Minimize the DFA and show all steps, including state merging.
•
Verify that the automaton accepts the correct language by testing with sample strings.
Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]
Refer to page 60 for solving the Knapsack problem using dynamic programming.
Instructions:
•
Implement the dynamic programming approach for the 0/1 Knapsack problem.
Clearly define the recurrence relation and show the construction of the DP table.
Verify your solution by tracing the selected items for a given weight limit.
Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]
Chapter 11 Solutions
EBK STARTING OUT WITH PROGRAMMING LOGIC
Ch. 11.1 - What is a menu-driven program?Ch. 11.1 - The items displayed in a menu are often preceded...Ch. 11.1 - What type of structure do you use in a program to...Ch. 11.3 - Explain why most menu-driven programs use a loop...Ch. 11.3 - If a program uses a loop to display a menu...Ch. 11.4 - Prob. 11.6CPCh. 11.4 - Prob. 11.7CPCh. 11.4 - When a program has a lot of items for the user to...Ch. 11 - Prob. 1MCCh. 11 - Prob. 2MC
Ch. 11 - If a menu-driven program uses a loop to redisplay...Ch. 11 - A program that uses a multiple-level menu displays...Ch. 11 - Prob. 5MCCh. 11 - When the user selects an operation from a...Ch. 11 - When the user selects an operation from a(n)...Ch. 11 - Prob. 1TFCh. 11 - It is not usually necessary to validate the user's...Ch. 11 - In most cases, a menu-driven program should be...Ch. 11 - If a menu-driven program does not use a loop to...Ch. 11 - In a single-level menu, the user might see a...Ch. 11 - What type of structure do you use in a program to...Ch. 11 - What ways for validating a users menu selection...Ch. 11 - How can you design a menu-driven program so that...Ch. 11 - When a program has a lot of items for the user to...Ch. 11 - Prob. 1AWCh. 11 - Design a case structure that can be used with the...Ch. 11 - Put the algorithms that you designed for questions...Ch. 11 - Look for ways to modularize the algorithm that you...Ch. 11 - Language Translator Design a program that displays...Ch. 11 - Prob. 2PECh. 11 - Prob. 3PECh. 11 - Astronomy Helper Create an application that...Ch. 11 - Golf Score Modification In Programming Exercise 6...Ch. 11 - Phone Book Program Design a program that you can...Ch. 11 - Prob. 7PE
Knowledge Booster
Similar questions
- Refer to page 70 for problems related to process synchronization. Instructions: • • Solve a synchronization problem using semaphores or monitors (e.g., Producer-Consumer, Readers-Writers). Write pseudocode for the solution and explain the critical section management. • Ensure the solution avoids deadlock and starvation. Test with an example scenario. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward15 points Save ARS Consider the following scenario in which host 10.0.0.1 is communicating with an external SMTP mail server at IP address 128.119.40.186. NAT translation table WAN side addr LAN side addr (c), 5051 (d), 3031 S: (e),5051 SMTP B D (f.(g) 10.0.0.4 server 138.76.29.7 128.119.40.186 (a) is the source IP address at A, and its value. S: (a),3031 D: (b), 25 10.0.0.1 A 10.0.0.2. 1. 138.76.29.7 10.0.0.3arrow_forward6.3A-3. Multiple Access protocols (3). Consider the figure below, which shows the arrival of 6 messages for transmission at different multiple access wireless nodes at times t=0.1, 1.4, 1.8, 3.2, 3.3, 4.1. Each transmission requires exactly one time unit. 1 t=0.0 2 3 45 t=1.0 t-2.0 t-3.0 6 t=4.0 t-5.0 For the CSMA protocol (without collision detection), indicate which packets are successfully transmitted. You should assume that it takes .2 time units for a signal to propagate from one node to each of the other nodes. You can assume that if a packet experiences a collision or senses the channel busy, then that node will not attempt a retransmission of that packet until sometime after t=5. Hint: consider propagation times carefully here. (Note: You can find more examples of problems similar to this here B.] ☐ U ப 5 - 3 1 4 6 2arrow_forward
- Just wanted to know, if you had a scene graph, how do you get multiple components from a specific scene node within a scene graph? Like if I wanted to get a component from wheel from the scene graph, does that require traversing still? Like if a physics component requires a transform component and these two component are part of the same scene node. How does the physics component knows how to get the scene object's transform it is attached to, this being in a scene graph?arrow_forwardHow to develop a C program that receives the message sent by the provided program and displays the name and email included in the message on the screen?Here is the code of the program that sends the message for reference: typedef struct { long tipo; struct { char nome[50]; char email[40]; } dados;} MsgStruct; int main() { int msg_id, status; msg_id = msgget(1000, 0600 | IPC_CREAT); exit_on_error(msg_id, "Creation/Connection"); MsgStruct msg; msg.tipo = 5; strcpy(msg.dados.nome, "Pedro Silva"); strcpy(msg.dados.email, "pedro@sapo.pt"); status = msgsnd(msg_id, &msg, sizeof(msg.dados), 0); exit_on_error(status, "Send"); printf("Message sent!\n");}arrow_forward9. Let L₁=L(ab*aa), L₂=L(a*bba*). Find a regular expression for (L₁ UL2)*L2. 10. Show that the language is not regular. L= {a":n≥1} 11. Show a derivation tree for the string aabbbb with the grammar S→ABλ, A→aB, B→Sb. Give a verbal description of the language generated by this grammar.arrow_forward
- 14. Show that the language L= {wna (w) < Nь (w) < Nc (w)} is not context free.arrow_forward7. What language is accepted by the following generalized transition graph? a+b a+b* a a+b+c a+b 8. Construct a right-linear grammar for the language L ((aaab*ab)*).arrow_forward5. Find an nfa with three states that accepts the language L = {a^ : n≥1} U {b³a* : m≥0, k≥0}. 6. Find a regular expression for L = {vwv: v, wЄ {a, b}*, |v|≤4}.arrow_forward
- 15. The below figure (sequence of moves) shows several stages of the process for a simple initial configuration. 90 a a 90 b a 90 91 b b b b Represent the action of the Turing machine (a) move from one configuration to another, and also (b) represent in the form of arbitrary number of moves.arrow_forward12. Eliminate useless productions from Sa aA BC, AaBλ, B→ Aa, C CCD, D→ ddd Cd. Also, eliminate all unit-productions from the grammar. 13. Construct an npda that accepts the language L = {a"b":n≥0,n‡m}.arrow_forwardYou are given a rope of length n meters and scissors that can cut the rope into any two pieces. For simplification, only consider cutting the rope at an integer position by the meter metric. Each cut has a cost associated with it, c(m), which is the cost of cutting the rope at position m. (You can call c(m) at any time to return the cost value.) The goal is to cut the rope into k smaller pieces, minimizing the total cost of cutting. B Provide the pseudo-code of your dynamic programming algorithm f(n,k) that will return the minimum cost of cutting the rope of length n into k pieces. Briefly explain your algorithm. What is the benefit of using dynamic programming for this problem? What are the key principles of dynamic programming used in your algorithm?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTEBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming with Microsoft Visual Basic 2017Computer ScienceISBN:9781337102124Author:Diane ZakPublisher:Cengage Learning
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781305480537
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Programming with Microsoft Visual Basic 2017
Computer Science
ISBN:9781337102124
Author:Diane Zak
Publisher:Cengage Learning