
(a)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of melt ice.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(a)

Answer to Problem 1PS
In ice the water molecules are held together by hydrogen bonding network to from a three dimensional lattice.
Explanation of Solution
In water molecules the hydrogen bond in ice are linear and have strong directional property, this directionality indicate that hydrogen bonds in ice are as strong as a covalent bond. During melting few of these hydrogen bonds are melting to from water.
In water a
(b).
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of sublime solid of iodine.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(b).

Answer to Problem 1PS
Iodine molecules are non-polar, only dispersion forces must be overcome.
Explanation of Solution
They sublime because though there are covalent bonds within molecule holding two iodine atoms together.
From this molecule Van der Waal’s forces are very weak interactions between molecules of a substance hence the iodine molecules easily escape from the solid structure easily.
(c)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of convert liquid
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(c)

Answer to Problem 1PS
Ammonia vaporization having hydrogen bonding was occurred.
Explanation of Solution
Ammonia is a polar molecule since the nitrogen atom is more electronegative than hydrogen, and the only intermolecular forces present are London dispersion force was occurred.
Want to see more full solutions like this?
Chapter 11 Solutions
OWLv2 6-Months Printed Access Card for Kotz/Treichel/Townsend's Chemistry & Chemical Reactivity, 9th, 9th Edition
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- EBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENTIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





