Find the reactions and plot the shear force and bending moment diagrams.
Mention the points of inflection and mention the maximum shear and moment in each span.

Explanation of Solution
Given information:
EI is constant.
Calculation:
Find the stiffness of each member connected to joint B as follows;
Find the total stiffness at joint B as follows;
Find the distribution factors at joint B using the relation;
Refer the appendix Table A.4 to find the fixed end moments.
Find the fixed end moment at each end of the member AB as follows;
Find the fixed end moment at each end of the member BC as follows;
Show the moment distribution computations as in Figure 1.
Show the members AB and BC as in Figure 2.
Refer Figure (2),
Consider member AB:
Take moment about point A;
Resolve the vertical component of forces.
Consider member BC:
Take moment about point B;
Resolve the vertical component of forces.
Show the free body diagram of the shear force and bending moment as in Figure 3.
Want to see more full solutions like this?
Chapter 11 Solutions
UCD FUND OF STRUCTURAL ANALYSIS 5E
- Refer to exhibit #098. At what depth was water encountered?arrow_forwardWhat is the reaction moment at A for the frame shown? a. 222.1 k-ft b. 107.8 k-ft c. 20.8 k-ft d. 23.25 k-ftarrow_forward“When a conflict exists between the project floor plans and detailed material schedule relative to size or number, which of the following usually governs in typical order of precedence?arrow_forward
- What are the critical activitiesarrow_forwardApproximately how many pounds of water are necessary to hydrate 100 pounds of type I Portland cement? 30 50 75 94arrow_forward7:05 3.1 Trabajo en clase.pptx .III LTE 8 Trabajo en clases 3.1 C9 X 20 W8 X 21 5-15. PL¹× 12 Fy = 50 klb/plg² KL = 16 pies KL 21 pies 2 plg MC 13 × 50 PL × 12 Fy = 42 klb/plg2 Fy = 36 klb/plg² 8 plg K k MC8 × 21.4 KL = 20 piesarrow_forward
- The steel frameword below is used to support the reinforced concrete slab used for an office area above the first storey. The slab is 210 mm thick. Sketch the loading that acts along members BE and FED. Use a = 2.15 m and b = 5.25 m. Refer to the 2024 OBC live load table. The unit weight for the concrete is 24.15 kN/m3.find:Loading for member BE Loading for member FED Live and Dead Loadsarrow_forwardFor the simply supported beam below, draw both the shear force (VFD) and ending moment (BDM) diagrams. Please show all equations and free body diagrams (FBD). Note: I want a cut through each of the three sections of the beam, with all related forces calculated and shown on the VFD and BMD.Reaction Forces Shear Force DiagramMaximum Shear ForceEquation for cut 1, 2, 3 respectively.Confirmation of Reaction ForcesBending Moment DiagramMaximum Bending Momentarrow_forwardFor the structural frame below, draw the shear force (VFD) and bending moment (BMD) diagrams for each of the three members of the frame. The frame is pin connected at A, C and D and fixed at joint B.Find:VFD & BMD for segment AB VFD & BMD for segment BCVFD & BMD for segment CD Reaction Forces VFD Equations BMD EquationsFree Body Diagramsarrow_forward
- Determine the horizontal and vertical reactions at A and C for the two member frame below. Use P1 = 3.2 kN, P2 = 14.5 kN/m, L1 = 3.3 m, and L2 = 2.3 m. Free Body DiagramsTriangular Load Use of Pin Reaction Forcesarrow_forwardDetermine the reaction forces at supports A and C for the compound beam. Assume C is fixed, B is a pin, and A is a roller. Use P1 = 16 kN/m, P2 = 21 kN, L1 = 3.5 m, L2 = 1.5 m, and L3 – 1.5 m. needs:Triangular Load Use of Pin Reaction Forcesfree body diagramsarrow_forwardDetermine all displacement components and internal reactions at node 2 using the stiffness method. Assume I = 300(10^6) mm4, A = 10(10^3) mm2, E = 200 GPa for each member. Use the values of L3=2.5m, L4=4.5m, w=12kN/m and P=10kN.arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





