
Concept explainers
CASE STUDY | Art inspires learning
A genetics student visiting a museum saw a painting by Goya showing a woman with a newborn baby in her lap that had very short arms and legs along with some facial abnormalities. Wondering whether this condition might be a genetic disorder, the student went online, learning that the baby might have Roberts syndrome (RBS), a rare autosomal recessive trait. She read that cells in RBS have mitotic errors, including the premature separation of centromeres and other heterochromatic regions of homologs in metaphase instead of anaphase. As a result, metaphase chromosomes have a rigid or “railroad track” appearance. RBS has been shown to be caused by mutant alleles of the ESCO2 gene, which functions during cell division.
The student wrote a list of questions to investigate in an attempt to better understand this condition. How would you answer these questions?
What do centromeres and other heterochromatic regions have in common that might cause this appearance?

Case summary:
On visiting the museum, the genetics student noticed a painting made by the Goya. In the painting, a woman was drawn with the baby in her lap, the baby had very little arms and legs along with some facial abnormalities. The student wonders about the condition, that it might be a genetic disorder. Through the online research, he reached to the conclusion that the baby might have RBS (Roberts syndrome), it is a rare autosomal recessive trait. In this disorder, the cells suffered from the mitotic errors that include the early separation of the centromeres and also heterochromatic regions of the homologous chromosomes at the stage of the metaphase instead of anaphase. RBS is caused by the mutated alleles of the ESCO2 gene, that has a role in the cell division.
Characters in the case:
A genetics student and a painting of a baby withvery little arms and legs along with some facial abnormalities.
Adequate information:
Facts of the case that brings in major impact are the limbs and facial abnormality in the painting of a baby, which a genetic student interpreted as RBS (Roberts syndrome) that iscaused by the mutated alleles of the ESCO2 gene.
To determine:
The common thing in between the centromere and other heterochromatic regions that causes the abnormal appearance in the RBS.
Given information:
The newborn baby had many facial abnormalities and also the length of the arms and legs are comparatively short.
Explanation of Solution
Roberts syndrome is the extremely rare genetic disorder that is due to the disrupted cell division that leads to the malformation of the bones, face, arms, legs and the skull. On chromosome number 8, a mutation in the gene ESCO2 results in the Roberts syndrome.
In a normal individual, during the cell division the copied chromosomes attach themselves to the centromeres but in RBS the newly formed chromosomes are not frequently attached themselves with the centromeres. Due to which the proper alignment of the chromosomes does not takes place.
PCS (premature chromosomal separation) occurs in the RBS as the chromosomes that are supposed to separate at the anaphase stage separates at the metaphase stage. Another chromosomal abnormality is that HR (heterochromatin repulsion), chromosomes that are having the HR experiences the heterochromatin separation at the metaphase stage. Both of these chromosomal abnormalities displays a railroad track appearance as they both lack the primary constriction and also the heterochromatin repulsion.
Therefore, it can be concluded that centromeres and the other heterochromatin regions both are separated at the metaphase stage that could cause the abnormality in the baby having RBS.
Want to see more full solutions like this?
Chapter 11 Solutions
Essentials of Genetics (9th Edition) - Standalone book
- Determine how much ATP would a cell produce when using fermentation of a 50 mM glucose solution?arrow_forwardDetermine how much ATP would a cell produce when using aerobic respiration of a 7 mM glucose solution?arrow_forwardDetermine how much ATP would a cell produce when using aerobic respiration to degrade one small protein molecule into 12 molecules of malic acid, how many ATP would that cell make? Malic acid is an intermediate in the Krebs cycle. Assume there is no other carbon source and no acetyl-CoA.arrow_forward
- Identify each of the major endocrine glandsarrow_forwardCome up with a few questions and answers for umbrella species, keystone species, redunant species, and aquatic keystone speciesarrow_forward19. On the diagram below a. Label the three pictures as: DNA; polypeptide; or RNA. b. Label the arrows as: translation or transcription/RNA processing. c. Add the following details to the diagram. Promoter region TATA box Transcription start site Transcription terminator Intron (A,B,C,D) Exons (1,2,3,4,5) Splice sites 5' cap 5' UTR (untranslated region) 3' poly A tail 3' UTR (untranslated region) Translational start (AUG) Translational stop (UGA, UAG, or UAA) N and C ends of polypeptide 0000arrow_forward
- Match the letter labels in the figure below to the terms. Some letter labels are not used. MNNNNNNIN M C B A M D F E H K G 8arrow_forwardThe diagram below illustrates a quorum sensing pathway from Staphylococcus aureus. Please answer the following questions. 1. Autoinduction is part of the quorum sensing system. Which promoter (P2 or P3) is critical for autoinduction? 2)This staphylococcus aureus grows on human wounds, causing severe infections. You would like to start a clinical trial to treat these wound infections. Please describe: a) What molecule do you recommend for the trial. Why? b) Your trial requires that Staphylococcus aureus be isolated from the wound and submitted to genome sequencing before admittance. Why? What are you testing for? 3) If a mutation arises where the Promoter P3 is constitutively active, how would that influence sensitivity to AIP? Please explain your rationale. 4) This pathway is sensitive to bacterial cell density. Describe two separate mutation that would render the pathway active independent of cell density. Briefly explain your rationale. Mutation 1 Mutation 2arrow_forwardThere is currently a H5N1 cattle outbreak in North America. According to the CDC on Feb 26*: "A multistate outbreak of HPAI A(H5N1) bird flu in dairy cows was first reported on March 25, 2024. This is the first time that these bird flu viruses had been found in cows. In the United States, since 2022, USDA has reported HPAI A(H5N1) virus detections in more than 200 mammals." List and describe two mechanisms that could lead to this H5N1 influenza strain evolving to spread in human: Mechanisms 1: Mechanisms 2: For the mutations to results in a human epidered they would need to change how the virus interacts with the human host. In the case of mutations that may promote an epidemic, provide an example for: a protein that might incur a mutation: how the mutation would change interactions with cells in the respiratory tract (name the receptor on human cells) List two phenotypic consequence from this mutation that would increase human riskarrow_forward
- You have a bacterial strain with the CMU operon: a) As shown in the image below, the cmu operon encodes a peptide (Pep1), as well as a kinase and regulator corresponding to a two-component system. The cmu operon is activated when Pep 1 is added to the growth media. Pep1 is a peptide that when added extracellularly leads to activation of the Cmu operon. Pep1 cmu-kinase cmu-regulator You also have these genetic components in other strains: b) An alternative sigma factor, with a promoter activated by the cmu-regulator, that control a series of multiple operons that together encode a transformasome (cellular machinery for transformation). c) the gene cl (a repressor). d) the promoter X, which includes a cl binding site (and in the absence of cl is active). e) the gene gp (encoding a green fluorescence protein). Using the cmu operon as a starting point, and assuming you can perform cloning to rearrange any of these genomic features, how would you use one or more of these to modify the…arrow_forwardYou have identified a new species of a Gram-positive bacteria. You would like to screen their genome for all proteins that are covalently linked to the cell wall. You have annotated the genome, so that you identified all the promoters, operons, and genes sequences within the operons. Using these features, what would you screen for to identify a set of candidates for proteins covalently linked to the bacterial cell wall.arrow_forwardBelow is a diagram from a genomic locus of a bacterial genome. Each arrow represents a coding region, and the arrowheads indicate its orientation in the genome. The numbers are randomly assigned. Draw the following features on the diagram, and explain your rationale for each feature: 10 12 合會會會會長 6 a) Expected transcriptions, based on known properties of bacterial genes and operons. How many proteins are encoded in each of the transcripts? b) Location of promoters (include rationale) c) Location of transcriptional terminators (include rationale) d) Locations of Shine-Dalgarno sequences (include rationale)arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning





