Terminology Match each of the following tests to the appropriate description: test of independence: test of homogeneity: test of goodness of fit.
test to determine if different populations have the same proportion of specified characteristics
test to determine if two variables are statistically independent
test to determine if a population has a specified distribution
The match of each of the following tests to appropriate description: test of independence; test of homogeneity; test of goodness of fit. The tests are:
(i) Test to determine if different populations have the same proportion of specified characteristics.
(ii) Test to determine if two variables are statistically independent.
(iii) Test to determine if a population has a specified distribution.
Answer to Problem 1CR
Solution:
(i) The test of homogeneity can be used to determine if different populations share the same proportions of specified characteristics.
(ii) The test of independence can be used to determine if the two variables are statistically independent.
(iii) Test of goodness of fit used to determine if a population has a specified distribution.
Explanation of Solution
A chi square test of homogeneity tests the claim that different population shares the same proportions of specified characteristics.
The chi square test of independence is used to test for the independence of two variables. Hence the test of independence can be used to determine if the two variables are statistically independent.
Test of goodness of fit used to determine if a population has a specified distribution.
Want to see more full solutions like this?
Chapter 11 Solutions
Understanding Basic Statistics
- A well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill