Concept explainers
Think of several examples in everyday life of motion that is at least approximately simple harmonic. In what respects does each differ from
The example of approximate simple harmonic motion from everyday life.
Answer to Problem 1CQ
The motion of a swing in a park is simple harmonic for small amplitudes.
Explanation of Solution
Simple harmonic motion is a type of motion in which the restoring force depends on the displacement. It is periodic in nature. Motion of a swing in a park is an example of simple harmonic motion.
For smaller amplitudes, it can be approximated as simple harmonic motion. When the swing oscillates, its mechanical energy is given away due to dissipative forces.
Want to see more full solutions like this?
Chapter 11 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardCan this analogy of SHM to circular motion be carried out with an object oscillating on a spring vertically hung from the ceiling? Why or why not? If given the choice, would you prefer to use a sine function or a cosine function to model the motion?arrow_forwardWhat conditions must be met to produce SHM?arrow_forward
- If a car has a suspension system with a force constant of 5.00104 N/m , how much energy must the car’s shocks remove to dampen an oscillation starting with a maximum displacement of 0.0750 m?arrow_forwardIn an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardThe mechanical energy of an undamped block-spring system is constant as kinetic energy transforms to elastic potential energy and vice versa. For comparison, explain what happens to the energy of a damped oscillator in terms of the mechanical, potential, and kinetic energies.arrow_forward
- Consider the damped oscillator illustrated in Figure 12.16a. The mass of the object is 375 g, the spring constant is 100 N/m, and b = 0.100 N s/m. (a) Over what time interval does the amplitude drop to half its initial value? (b) What If? Over what time interval does the mechanical energy drop to half its initial value? (c) Show that, in general, the fractional rate at which the amplitude decreases in a damped harmonic oscillator is one-half the fractional rate at which the mechanical energy decreases.arrow_forwardSuppose a diving board with no one on it bounces up and down in a SHM with a frequency of 4.00 Hz. The board has an effective mass of 10.0 kg. What is the frequency of the SHM of a 75.0-kg diver on the board?arrow_forwardIf the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forward
- The total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardDetermine the angular frequency of oscillation of a thin, uniform, vertical rod of mass m and length L pivoted at the point O and connected to two springs (Fig. P16.78). The combined spring constant of the springs is k(k = k1 + k2), and the masses of the springs are negligible. Use the small-angle approximation (sin ). FIGURE P16.78arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning