Concept explainers
(a)
Interpretation:
Whether the statement, “
(a)
Explanation of Solution
The reaction between silver nitrate and potassium sulphate forms the precipitate of aluminium sulphate and soluble potassium nitrate.
So, from the mole ratio of the above balanced equation, it can be conclude that
The moles of
The moles of
So, from the mole ratio of the reaction, it can be stated that
The given statement, “
The corrected statement is “
(b)
Interpretation:
Whether the statement, “
(b)
Explanation of Solution
From the above calculation it is clear that given statement is correct. From the mole ratio of the balanced equation
(c)
Interpretation:
Whether the statement, “
(c)
Explanation of Solution
The given statement, “
The corrected statement is “
(d)
Interpretation:
Whether the statement, “the final reaction mixture will contain the products and unreacted
(d)
Explanation of Solution
The given statement is incorrect because all of the
The corrected statement is “the final reaction mixture will contain the products and unreacted
(e)
Interpretation:
Whether the statement, “
(e)
Explanation of Solution
The given statement is incorrect because the unreacted
Therefore, the corrected statement is “
Want to see more full solutions like this?
Chapter 11 Solutions
INTRO. TO CHEM LOOSELEAF W/ALEKS 18WKCR
- Describe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forward2. Equal amounts (moles) of acetic acid(aq) and sodium sulfite, Na2SO3(aq), are mixed. The resulting solution is acidic basic neutralarrow_forwardA 25.0-mL sample of vinegar (which contains the weak acid acetic acid, CH3CO2H) requires 28.33 mL of a 0.953 M solution of NaOH for titration to the equivalence point. What is the mass of acetic acid (molar mass = 60.05 g/mol), in grams, in the vinegar sample, and what is the concentration of acetic acid in the vinegar? CH3CO2H(aq) + NaOH(aq) NaCH3CO2(aq) + H2O(l)arrow_forward
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardA soluble iodide was dissolved in water. Then an excess of silver nitrate, AgNO3, was added to precipitate all of the iodide ion as silver iodide, AgI. If 1.545 g of the soluble iodide gave 2.185 g of silver iodide, how many grams of iodine are in the sample of soluble iodide? What is the mass percentage of iodine, I, in the compound?arrow_forwardCalcium in blood or urine can be determined by precipitation as calcium oxalate, CaC2O4. The precipitate is dissolved in strong acid and titrated with potassium permanganate. The equation for reaction is 2MnO4(aq)+6H+(aq)+5H2C2O4(aq)2Mn2+(aq)+10CO2(g)+8H2O A 24-hour urine sample is collected from an adult patient, reduced to a small volume, and titrated with 26.2 mL of 0.0946 M KMnO4. How many grams of calcium oxalate are in the sample? Normal range for Ca2+ output for an adult is 100 to 300 mg per 24 hour. Is the sample within the normal range?arrow_forward
- Separate samples of a solution of an unknown soluble ionic compound are treated with KCl, Na2SO4, and NaOH. A precipitate forms only when Na2SO4 is added. Which cations could be present in the unknown soluble ionic compound?arrow_forwardOne method for determining the purity of aspirin (C9H8O4) is to hydrolyze it with NaOH solution and then to titrate the remaining NaOH. The reaction of aspirin with NaOH is as follows: A sample of aspirin with a mass of 1.427 g was boiled in 50.00 mL of 0.500 M NaOH. After the solution was cooled, it took 31.92 mL of 0.289 M HCl to titrate the excess NaOH. Calculate the purity of the aspirin. What indicator should be used for this titration? Why?arrow_forwardA 0.608-g sample of fertilizer contained nitrogen as ammonium sulfate, (NH4)2SO4. It was analyzed for nitrogen by heating with sodium hydroxide. (NH4)2SO4(s)+2NaOH(aq)Na2SO4(aq)+2H2O(l)+2NH3(g) The ammonia was collected in 46.3 mL of 0.213 M HCl (hydrochloric acid), with which it reacted. NH3(g)+HCl(aq)NH4Cl(aq) This solution was titrated for excess hydrochloric acid with 44.3 mL of 0.128 M NaOH. NaOH(aq)+HCl(aq)NaCl(aq)+H2O(l) What is the percentage of nitrogen in the fertilizer?arrow_forward
- Arsenic acid, H3AsO4, is a poisonous acid that has been used in the treatment of wood to prevent insect damage. Arsenic acid has three acidic protons. Say you take a 25.00-mL sample of arsenic acid and prepare it for titration with NaOH by adding 25.00 mL of water. The complete neutralization of this solution requires the addition of 53.07 mL of 0.6441 M NaOH solution. Write the balanced chemical reaction for the titration, and calculate the molarity of the arsenic acid sample.arrow_forwardA student is asked to identify the metal nitrate present in an aqueous solution. The cation in the solution can be either Na+, Ba2+, Ag+, or Ni2+. Results of solubility experiments are as follows: unknown + chloride ions—no precipitate unknown + carbonate ions—precipitate unknown + sulfate ions—precipitate What is the cation in the solution?arrow_forwardA 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning