
To find:
a) Molar mass of caffeine.
b) Molecular formula of caffeine.

Answer to Problem 11.77QA
Solution:
a) The molar mass of caffeine is 193.97 g/mol.
b) The molecular formula of caffeine is C8H10N4O2.
Explanation of Solution
1) Concept:
2) Given:
i) Mass of caffeine solution = 150 mg
ii) Solvent used =10.0 g camphor = 0.01 kg (since 1 kg = 1000 g)
iii)
iv)
v) Caffeine is a non-electrolyte. This suggests that, the van’t Hoff factor (i) for caffeine acid is 1.
vi) % Mass of C = 49.49
vii) % Mass of H = 5.15
viii) % Mass of N = 28.87
3) Formula:
Formula for depression in freezing point is:
Where,
Formula for molality is:
4) Calculations:
a)
Calculate Molar mass of Caffeine:
Solving above equation for molality, we get,
We find moles of solute caffeine using calculated molality and mass of solvent as:
Molar mass is the mass in grams per mole of that substance, so it will be:
The molar mass of Caffeine is
b)
Molecular formula of caffeine:
Given:
% Mass of C
% Mass of H
% Mass of N
Consider the mass of caffeine
Therefore,
And remaining is Oxygen
i. Calculate mass of oxygen:
From these given masses we would find out mass of oxygen as,
ii. Calculate moles of each atom:
We can calculate the moles of each using the mass in g.
iii. Find out empirical formula:
Comparing moles of C, H and O, we observe that moles of O are the least. So, atoms of C, H and O are calculated by dividing each of the moles by least amount of moles.
Thus empirical formula for caffeine is C4H5N2O.
iv. Find out molecular formula:
We have calculated the molar mass of caffeine in part a) =
The molar mass of caffeine is 193.97 g/mol.
The molecular formula of caffeine is C8H10N4O2.
Conclusion:
Freezing point depression is a colligative property which is useful in determining the molar mass of the solute in a solution. Using stoichiometry between a compound and its constituent elements, one can determine the empirical formula and molecular formula of the unknown substance.
Want to see more full solutions like this?
Chapter 11 Solutions
CHEMISTRY ATOM FOCUSED EBK W/ A.C. >I<
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





