BIO Forearm. In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is attached to the forearm 3.80 cm from the elbow joint. Assume that the persons hand and forearm together weigh 15.0 N and that their center of gravity is 15.0 cm from the elbow (not quite hallway to the hand). The forearm is held horizontally at a right angle to the upper arm, with the biceps muscle exerting its force perpendicular to the forearm, (a) Draw a free-body diagram for the forearm, and find the force exerted by the biceps when the hand is empty, (b) Now the person holds an 80.0-N weight in his hand, with the forearm still horizontal. Assume that the center of gravity of this weight is 33.0 cm from the elbow. Draw a free-body diagram for the forearm, and find the force now exerted by the biceps. Explain why the biceps muscle needs to be very strong, (c) Under the conditions of part (b), find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) While holding the 80.0-N weight, the person raises his forearm until it is at an angle of 53.0° above the horizontal. If the biceps muscle continues to exert its force perpendicular to the forearm, what is this force now? Has the force increased or decreased from its value in part (b)? Explain why this is so, and test your answer by doing this with your own arm.
BIO Forearm. In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is attached to the forearm 3.80 cm from the elbow joint. Assume that the persons hand and forearm together weigh 15.0 N and that their center of gravity is 15.0 cm from the elbow (not quite hallway to the hand). The forearm is held horizontally at a right angle to the upper arm, with the biceps muscle exerting its force perpendicular to the forearm, (a) Draw a free-body diagram for the forearm, and find the force exerted by the biceps when the hand is empty, (b) Now the person holds an 80.0-N weight in his hand, with the forearm still horizontal. Assume that the center of gravity of this weight is 33.0 cm from the elbow. Draw a free-body diagram for the forearm, and find the force now exerted by the biceps. Explain why the biceps muscle needs to be very strong, (c) Under the conditions of part (b), find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) While holding the 80.0-N weight, the person raises his forearm until it is at an angle of 53.0° above the horizontal. If the biceps muscle continues to exert its force perpendicular to the forearm, what is this force now? Has the force increased or decreased from its value in part (b)? Explain why this is so, and test your answer by doing this with your own arm.
BIO Forearm. In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is attached to the forearm 3.80 cm from the elbow joint. Assume that the persons hand and forearm together weigh 15.0 N and that their center of gravity is 15.0 cm from the elbow (not quite hallway to the hand). The forearm is held horizontally at a right angle to the upper arm, with the biceps muscle exerting its force perpendicular to the forearm, (a) Draw a free-body diagram for the forearm, and find the force exerted by the biceps when the hand is empty, (b) Now the person holds an 80.0-N weight in his hand, with the forearm still horizontal. Assume that the center of gravity of this weight is 33.0 cm from the elbow. Draw a free-body diagram for the forearm, and find the force now exerted by the biceps. Explain why the biceps muscle needs to be very strong, (c) Under the conditions of part (b), find the magnitude and direction of the force that the elbow joint exerts on the forearm, (d) While holding the 80.0-N weight, the person raises his forearm until it is at an angle of 53.0° above the horizontal. If the biceps muscle continues to exert its force perpendicular to the forearm, what is this force now? Has the force increased or decreased from its value in part (b)? Explain why this is so, and test your answer by doing this with your own arm.
The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.
After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.
The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.
Chapter 11 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.