(a)
Interpretation:
The detailed mechanism for the reaction of the given compound with HCl is to be drawn. The major product of the reaction is to be predicted.
Concept introduction:
In an addition of a Bronsted acid across a double bond, the proton can bond to one of the two possible carbon atoms. The major product of an electrophilic addition of a Bronsted acid to an
(b)
Interpretation:
The detailed mechanism for the reaction of the given compound with HCl is to be drawn. The major product of the reaction is to be predicted.
Concept introduction:
In an addition of a Bronsted acid across a double bond, the proton can bond to one of the two possible carbon atoms. The major product of an electrophilic addition of a Bronsted acid to an alkene is the one that proceeds through the more stable carbocation intermediate. If alkene is symmetrical, then it results in only one product. If an alkene is unsymmetrical, then two constitutional isomers can be produced. The major product is the one in which a more stable carbocation intermediate is produced. Tertiary carbocation is the most stable, followed by secondary and then primary. Methyl carbocations are least stable.
(c)
Interpretation:
The detailed mechanism for the reaction of the given compound with HCl is to be drawn. The major product of the reaction is to be predicted.
Concept introduction:
In an addition of a Bronsted acid across a double bond, the proton can bond to one of the two possible carbon atoms. The major product of an electrophilic addition of a Bronsted acid to an alkene is the one that proceeds through the more stable carbocation intermediate. If alkene is symmetrical, then it results in only one product. If an alkene is unsymmetrical, then two constitutional isomers can be produced. The major product is the one in which a more stable carbocation intermediate is produced. Tertiary carbocation is the most stable, followed by secondary and then primary. Methyl carbocations are least stable.
(d)
Interpretation:
The detailed mechanism for the reaction of the given compound with HCl is to be drawn. The major product of the reaction is to be predicted.
Concept introduction:
In an addition of a Bronsted acid across a double bond, the proton can bond to one of the two possible carbon atoms. The major product of an electrophilic addition of a Bronsted acid to an alkene is the one that proceeds through the more stable carbocation intermediate. If alkene is symmetrical, then it results in only one product. If an alkene is unsymmetrical, then two constitutional isomers can be produced. The major product is the one in which a more stable carbocation intermediate is produced. Tertiary carbocation is the most stable, followed by secondary and then primary. Methyl carbocations are least stable.

Want to see the full answer?
Check out a sample textbook solution
Chapter 11 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- Predict the major organic product(s) of the following reactions. Include stereochemistry when necessary. Write NR if no reaction, try to explain.arrow_forwardQ2: Explain why epoxides that react in an SN1 manner will not show any stereochemical inversion in the product. Q3: Rationalize why Alcohol B will react under the indicated reaction conditions, but Alcohol A will not. A ☑ OH B OH PBr3 R-Brarrow_forwardQ1: Predict the major organic product(s) of the following reactions. Include stereochemistry when necessary. Write NR if no reaction, try to explain. 1.) LDA, THF 2.) СОН CI OH H2SO4, heat OH m...... OH 1.) PCC, CH2Cl2 2.) CH3CH2MgBr, THF 3.) H3O+ 4.) TsCl, pyr 5.) tBuOK, tBuOH 1.) SOCI 2, CHCI 3 2.) CH3CH2ONA, DMF OH 1.) HBr 2.) Mg, THF 3.) H₂CO, THE 4.) H3O+ OH NaH, THFarrow_forward
- Problem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forwardPlease choose the best reagents to complete the following reactionarrow_forward
- Problem 6-17 Look at the following energy diagram: Energy Reaction progress (a) Is AG for the reaction positive or negative? Label it on the diagram. (b) How many steps are involved in the reaction? (c) How many transition states are there? Label them on the diagram. Problem 6-19 What is the difference between a transition state and an intermediate? Problem 6-21 Draw an energy diagram for a two-step reaction with Keq > 1. Label the overall AG°, transition states, and intermediate. Is AG° positive or negative? Problem 6-23 Draw an energy diagram for a reaction with Keq = 1. What is the value of AG° in this reaction?arrow_forwardProblem 6-37 Draw the different monochlorinated constitutional isomers you would obtain by the radical chlorination of the following compounds. (b) (c) Problem 6-39 Show the structure of the carbocation that would result when each of the following alkenes reacts with an acid, H+. (a) (b) (c)arrow_forwardPlease draw the major product of this reaction. Ignore inorganic byproducts and the carboxylic side productarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





