![PHYSICS 1250 PACKAGE >CI<](https://www.bartleby.com/isbn_cover_images/9781305000988/9781305000988_largeCoverImage.gif)
Concept explainers
(a)
The speed at the bottom of the half-pipe.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.48AP
The speed at the bottom of the half-pipe is
Explanation of Solution
Given info: The mass of particle is
Write the expression for conservation of work and energy law.
Here,
The skateboarder is at rest at point A, so there is a potential energy at point A,
Here,
The center of mass moves through one quarter of the circle.
The radius of the circle is,
The skateboarder is in motion so it acquires the kinetic energy at point B,
Here,
Substitute
Substitute
Conclusion:
Therefore, the speed at the bottom of the half-pipe is
(b)
The
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.48AP
The angular momentum of him about the center of curvature at the point B is
Explanation of Solution
Given info: The mass of particle is
Write the expression for the angular momentum about the center of curvature.
Here,
Substitute
Conclusion:
Therefore, the angular momentum of him about the center of curvature at the point B is
(c)
To explain: The angular momentum of him is constant in this maneuver, whereas the kinetic energy of his body is not constant.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.48AP
After the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
Explanation of Solution
Given info: The mass of particle is
A skateboarder passes the point B, so there is no tangential force acts on him because the wheels on the skate prevent this force. The torque is zero due to no tangential force, so the angular momentum will be constant.
The kinetic energy increase because his legs convert chemical energy into mechanical energy and the kinetic energy will not be constant. While the normal force rises trajectory to enhance his linear momentum.
Conclusion:
Therefore, after the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
(d)
The speed immediately after the skateboarder stands up.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.48AP
The speed of skateboarder after he stands up is
Explanation of Solution
Given info: The mass of particle is
The skateboarder stands up, so the distance is,
Write the expression for angular momentum.
Here,
Substitute
Conclusion:
Therefore, the speed of skateboarder after he stands up is
(e)
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 11.48AP
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Explanation of Solution
Given info: The mass of particle is
At point B, the skate boarder has kinetic and chemical energy is,
Here,
At point C, he has kinetic energy due and the potential energy is,
Here,
Write the expression of the conservation of energy.
Substitute
Write the expression for the kinetic energy at point B.
Substitute
Thus, the kinetic energy at point B is
Write the expression for the kinetic energy at point C.
Substitute
Thus, the kinetic energy at point C is
Write the expression for potential energy at point C.
Here,
The radius of the pipe at point C,
Substitute
Thus, the potential energy at point C is
Substitute
Conclusion:
Therefore, the amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Want to see more full solutions like this?
Chapter 11 Solutions
PHYSICS 1250 PACKAGE >CI<
- Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. Sketch and label a vector diagram illustrating the Galilean transformation of velocities that relates velocity of car P relative to the road, velocity of car Q relative to road, and velocity of car Q relative to car P at instant 3. In the frame of car P, at instant 3 is car Q moving to the west, moving to the east, or at rest? Explain.arrow_forwardJust 5 and 6 don't mind 7arrow_forwardIn an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardYou're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)