Concept explainers
(a)
The speed at the bottom of the half-pipe.
(a)
Answer to Problem 11.48AP
The speed at the bottom of the half-pipe is
Explanation of Solution
Given info: The mass of particle is
Write the expression for conservation of work and energy law.
Here,
The skateboarder is at rest at point A, so there is a potential energy at point A,
Here,
The center of mass moves through one quarter of the circle.
The radius of the circle is,
The skateboarder is in motion so it acquires the kinetic energy at point B,
Here,
Substitute
Substitute
Conclusion:
Therefore, the speed at the bottom of the half-pipe is
(b)
The
(b)
Answer to Problem 11.48AP
The angular momentum of him about the center of curvature at the point B is
Explanation of Solution
Given info: The mass of particle is
Write the expression for the angular momentum about the center of curvature.
Here,
Substitute
Conclusion:
Therefore, the angular momentum of him about the center of curvature at the point B is
(c)
To explain: The angular momentum of him is constant in this maneuver, whereas the kinetic energy of his body is not constant.
(c)
Answer to Problem 11.48AP
After the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
Explanation of Solution
Given info: The mass of particle is
A skateboarder passes the point B, so there is no tangential force acts on him because the wheels on the skate prevent this force. The torque is zero due to no tangential force, so the angular momentum will be constant.
The kinetic energy increase because his legs convert chemical energy into mechanical energy and the kinetic energy will not be constant. While the normal force rises trajectory to enhance his linear momentum.
Conclusion:
Therefore, after the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
(d)
The speed immediately after the skateboarder stands up.
(d)
Answer to Problem 11.48AP
The speed of skateboarder after he stands up is
Explanation of Solution
Given info: The mass of particle is
The skateboarder stands up, so the distance is,
Write the expression for angular momentum.
Here,
Substitute
Conclusion:
Therefore, the speed of skateboarder after he stands up is
(e)
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up.
(e)
Answer to Problem 11.48AP
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Explanation of Solution
Given info: The mass of particle is
At point B, the skate boarder has kinetic and chemical energy is,
Here,
At point C, he has kinetic energy due and the potential energy is,
Here,
Write the expression of the conservation of energy.
Substitute
Write the expression for the kinetic energy at point B.
Substitute
Thus, the kinetic energy at point B is
Write the expression for the kinetic energy at point C.
Substitute
Thus, the kinetic energy at point C is
Write the expression for potential energy at point C.
Here,
The radius of the pipe at point C,
Substitute
Thus, the potential energy at point C is
Substitute
Conclusion:
Therefore, the amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- No chatgpt pls will upvote Alreadyarrow_forwardTwo objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forwardA box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forward
- Plz solution should be complete No chatgpt pls will upvote .arrow_forwardA box with friction coefficient of 0.2 rests on a 12 foot long plank of wood. How high (in feet) must one side of the plank be lifted in order for the box to begin to slide?arrow_forwardWhat is a good general rule to follow in order to find the best choice of coordinate system to solve a dynamics problem?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning