
Concept explainers
Exercises11.3 (Composition as an Alternative to Inheritance) Many

Program Plan:
We will implement the BasePlusCommissionEmp class using composition instead of inheritance and invoke different functions in the test program subsequently.
Explanation of Solution
Explanation:
Program Description:
The program demonstrates composition as an alternate way of implementing functionality in Object oriented programming. Some of the pros and cons are self evident in the program, yet we’ll discuss the merits and demerits of using composition over inheritance herewith. As obvious, composition increases duplicacy of code as seen in BasePlusCommissionEmp class where a large part of attributes and functions of the Employee class have to be repeated in the BasePlusCommissionEmp class. Also, the test code or the actual application using these objects becomes more complicated because the use of Data structures like Vectors to store all similar objects together and invoke common functionality in a single loop gets limited. If there are a large number of objects with similar functionality and a little variances, the redundant code soon becomes prone to defect and maintenance nightmares. On the same hand, composition provides more control at the compile time by limiting common access modifier errors and methos overriding errors during development time. has-a relationship is suited mostly where there is limited or no commonality in attributes and functionality of the objects being modelled. Its always better to create an is-a classheirarchywhenthe objects being modelled are having a lot of common attributes and method, resulting in a generic common subset (the base class) and other derived class specializing form it. Inheritance makes the code cleaner to write, read and maintain.
Program:
// BasePlusCommissionEmp class definition . #ifndef BP_COMMISSION_H #define BP_COMMISSION_H #include<string>// C++ standard string class usingnamespace std; classBasePlusCommissionEmp { public: BasePlusCommissionEmp(conststring&, conststring&, conststring&, double = 0.0,double = 0.0, double = 0.0 ); //For generic attributes of Employee voidsetFirstName( conststring& ); // set first name stringgetFirstName() const; // return first name voidsetLastName( conststring& ); // set last name stringgetLastName() const; // return last name voidsetSocialSecurityNumber( conststring& ); // set SSN stringgetSocialSecurityNumber() const; // return SSN // additional functions for attributes of CommisionEmployee voidsetGrossSales( double ); // set gross sales amount doublegetGrossSales() const; // return gross sales amount voidsetCommissionRate( double ); // set commission rate doublegetCommissionRate() const; // return commission rate //additional functions for baseSalary voidsetBaseSalary( double ); // set base salary doublegetBaseSalary() const; // return base salary // Generic functions of Employee doubleearnings() const; voidprint() const; private: //Generic attributes of Employee stringfirstName; // composition: member object stringlastName; // composition: member object stringsocialSecurityNumber; //composition: member object //attributes of CommisionEmployee doublegrossSales; // gross weekly sales doublecommissionRate; // commission percentage //attribute for BaseSalary doublebaseSalary; // base salary }; // end class BasePlusCommissionEmp #endif BasePlusCommisionEmp.cpp /* BasePlusCommissionEmp.cpp using composition Created on: 31-Jul-2018 :rajesh@acroknacks.com */ #include<string>// C++ standard string class #include"BasePlusCommissionEmp.h" #include<iostream> usingnamespace std; BasePlusCommissionEmp::BasePlusCommissionEmp(conststring&fname, conststring&lname, conststring&ssn1, doublebaseSalary, doublegrossSales , doublecomRate ) :firstName (fname), lastName ( lname),socialSecurityNumber (ssn1 ) { setBaseSalary(baseSalary ); // validate and store base salary setGrossSales(grossSales);//validate and store gross sales setCommissionRate(comRate);//validate and store commision rate }// end constructor /&Functions Below are specific to This class */ // set gross sales amount voidBasePlusCommissionEmp::setGrossSales( double sales ) { if ( sales **gt;= 0.0 ) grossSales = sales; else throwinvalid_argument( "Gross sales must be >= 0.0" ); } // end function setGrossSales // return gross sales amount doubleBasePlusCommissionEmp::getGrossSales() const { returngrossSales; } // end function getGrossSales // set commission rate voidBasePlusCommissionEmp::setCommissionRate( double rate ) { if ( rate > 0.0 && rate < 1.0 ) commissionRate = rate; else throwinvalid_argument( "Commission rate must be > 0.0 and < 1.0" ); } // end function setCommissionRate doubleBasePlusCommissionEmp::getCommissionRate() const { returncommissionRate; } // end function getCommissionRate voidBasePlusCommissionEmp::setBaseSalary( double salary ) { if ( salary >= 0.0 ) baseSalary = salary; else throwinvalid_argument( "Salary must be >= 0.0" ); } // end function setBaseSalary // return base salary doubleBasePlusCommissionEmp::getBaseSalary() const { returnbaseSalary; } // end function getBaseSalary //compute earnings doubleBasePlusCommissionEmp::earnings() const { return ( (getCommissionRate() * getGrossSales()) + getBaseSalary()) ; } // end function earnings // print CommissionEmployee object voidBasePlusCommissionEmp::print() const { cout<<"\nBasePlusCommission employee: "; cout<<lastName<<", "<<firstName<<endl; cout<<"SSN : "<<socialSecurityNumber<<endl; cout<<"\n gross sales: $ "<<getGrossSales() <<"\n Base Salary: $ "<<getBaseSalary() <<"\n commission rate: "<<getCommissionRate() ; } // end function print /&Generic Employee functions **/ // set first name voidBasePlusCommissionEmp::setFirstName( conststring**first ) { firstName = first; // should validate } // end function setFirstName // return first name stringBasePlusCommissionEmp::getFirstName() const { returnfirstName; } // end function getFirstName // set last name voidBasePlusCommissionEmp::setLastName( conststring&last ) { lastName = last; // should validate } // end function setLastName // return last name stringBasePlusCommissionEmp::getLastName() const { returnlastName; } // end function getLastName // set social security number voidBasePlusCommissionEmp::setSocialSecurityNumber( conststring&ssn ) { socialSecurityNumber = ssn; // should validate } // end function setSocialSecurityNumber // return social security number stringBasePlusCommissionEmp::getSocialSecurityNumber() const { returnsocialSecurityNumber; } // end function getSocialSecurityNumber Test Program // Testing class BasePlusCommissionEmp. #include<iostream> #include<iomanip> #include"BasePlusCommissionEmp.h"// BasePlusCommissionEmp class definition usingnamespace std; intmain() { // instantiate a BasePlusCommissionEmp object BasePlusCommissionEmpemployee("Sue", "Jones", "222-22-2222",1500,10000,0.16 ); // get commission employee data cout<<"Employee information obtained by get functions: \n" <<"\nFirst name is "<<employee.getFirstName() <<"\nLast name is "<<employee.getLastName() <<"\nSocial security number is " <<employee.getSocialSecurityNumber() <<"\nBase Salary is $"<<employee.getBaseSalary() <<"\nGross sales is $"<<employee.getGrossSales() <<"\nCommission rate is $"<<employee.getCommissionRate() <<endl; cout<<"Earnings based on current Data : $"<<employee.earnings(); //Modify Sales data employee.setGrossSales( 8000 ); // set gross sales employee.setCommissionRate( .1 ); // set commission rate cout<<"\nUpdated employee information output by print function: \n" <<endl; employee.print(); // display the new employee information // display the employee's earnings cout<<"\n\n Updated Employee's earnings: $"<<employee.earnings() <<endl; } // end main
Employee information obtained by get functions:
First name is Sue
Last name is Jones
Social security number is 222-22-2222
Base Salary is $1500
Gross sales is $10000
Commission rate is $0.16
Earnings based on current Data : $3100
Updated employee information output by print function:
BasePlusCommission employee: Jones, Sue
SSN : 222-22-2222
gross sales: $ 8000
Base Salary: $ 1500
commission rate: 0.1
Updated Employee's earnings: $2300
Want to see more full solutions like this?
Chapter 11 Solutions
C++ How To Program Plus Mylab Programming With Pearson Etext -- Access Card Package (10th Edition)
- using r language for integration theta = integral 0 to infinity (x^4)*e^(-x^2)/2 dx (1) use the density function of standard normal distribution N(0,1) f(x) = 1/sqrt(2pi) * e^(-x^2)/2 -infinity <x<infinity as importance function and obtain an estimate theta 1 for theta set m=100 for the estimate whatt is the estimate theta 1? (2)use the density function of gamma (r=5 λ=1/2)distribution f(x)=λ^r/Γ(r) x^(r-1)e^(-λx) x>=0 as importance function and obtain an estimate theta 2 for theta set m=1000 fir the estimate what is the estimate theta2? (3) use simulation (repeat 1000 times) to estimate the variance of the estimates theta1 and theta 2 which one has smaller variance?arrow_forwardusing r language A continuous random variable X has density function f(x)=1/56(3x^2+4x^3+5x^4).0<=x<=2 (1) secify the density g of the random variable Y you find for the acceptance rejection method. (2) what is the value of c you choose to use for the acceptance rejection method (3) use the acceptance rejection method to generate a random sample of size 1000 from the distribution of X .graph the density histogram of the sample and compare it with the density function f(x)arrow_forwardusing r language a continuous random variable X has density function f(x)=1/4x^3e^-(pi/2)^4,x>=0 derive the probability inverse transformation F^(-1)x where F(x) is the cdf of the random variable Xarrow_forward
- using r language in an accelerated failure test, components are operated under extreme conditions so that a substantial number will fail in a rather short time. in such a test involving two types of microships 600 chips manufactured by an existing process were tested and 125 of them failed then 800 chips manufactured by a new process were tested and 130 of them failed what is the 90%confidence interval for the difference between the proportions of failure for chips manufactured by two processes? using r languagearrow_forwardI want a picture of the tools and the pictures used Cisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardA. What will be printed executing the code above?B. What is the simplest way to set a variable of the class Full_Date to January 26 2020?C. Are there any empty constructors in this class Full_Date?a. If there is(are) in which code line(s)?b. If there is not, how would an empty constructor be? (create the code lines for it)D. Can the command std::cout << d1.m << std::endl; be included after line 28 withoutcausing an error?a. If it can, what will be printed?b. If it cannot, how could this command be fixed?arrow_forward
- Cisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardTransform the TM below that accepts words over the alphabet Σ= {a, b} with an even number of a's and b's in order that the output tape head is positioned over the first letter of the input, if the word is accepted, and all letters a should be replaced by the letter x. For example, for the input aabbaa the tape and head at the end should be: [x]xbbxx z/z,R b/b,R F ① a/a,R b/b,R a/a, R a/a,R b/b.R K a/a,R L b/b,Rarrow_forwardGiven the C++ code below, create a TM that performs the same operation, i.e., given an input over the alphabet Σ= {a, b} it prints the number of letters b in binary. 1 #include 2 #include 3 4- int main() { std::cout > str; for (char c : str) { if (c == 'b') count++; 5 std::string str; 6 int count = 0; 7 char buffer [1000]; 8 9 10 11- 12 13 14 } 15 16- 17 18 19 } 20 21 22} std::string binary while (count > 0) { binary = std::to_string(count % 2) + binary; count /= 2; std::cout << binary << std::endl; return 0;arrow_forward
- Considering the CFG described below, answer the following questions. Σ = {a, b} • NT = {S} Productions: P1 S⇒aSa P2 P3 SbSb S⇒ a P4 S⇒ b A. List one sequence of productions that can accept the word abaaaba; B. Give three 5-letter words that can be accepted by this CFG; C. Create a Pushdown automaton capable of accepting the language accepted by this CFG.arrow_forwardGiven the FSA below, answer the following questions. b 1 3 a a b b с 2 A. Write a RegEx that is equivalent to this FSA as it is; B. Write a RegEx that is equivalent to this FSA removing the states and edges corresponding to the letter c. Note: To both items feel free to use any method you want, including analyzing which words are accepted by the FSA, to generate your RegEx.arrow_forward3) Finite State Automata Given the FSA below, answer the following questions. a b a b 0 1 2 b b 3 A. Give three 4-letter words that can be accepted by this FSA; B. Give three 4-letter words that cannot be accepted by this FSA; C. How could you describe the words accepted by this FSA? D. Is this FSA deterministic or non-deterministic?arrow_forward
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning




