Concept explainers
(a)
The
(a)
Answer to Problem 11.29P
The
Explanation of Solution
Write the expression to find the Hamiltonian matric for a spinning charge particle in a magnetic field
Here,
Write the expression for appropriate spin matrix
Where,
Given, the total magnetic field
Where,
Solving equation (I),
Substitute equation (II) in the above equation,
Solving further,
Conclusion:
Thus, the
(b)
Show that
(b)
Answer to Problem 11.29P
It has been proved that
Explanation of Solution
Write the time-dependent Schrodinger equation
Given,
Thus,
Substitute the above relations in equation (IV)
From part (a),
Thus,
Hence proved.
Conclusion:
It has been proved that
(c)
Whether the general solution for
(c)
Answer to Problem 11.29P
It has been proved that the general solution for
Explanation of Solution
From part (b),
Using the above relations,
Differentiate
Rewrite the above equation in the form of second order differential equation,
Solving the terms inside the bracket,
Substitute the above relation in equation (V)
The characteristic equation is
Solving the above quadratic equation,
Where,
The general solution
The general solution
For the initial condition,
From part (b),
Substitute
Substitute equation (IX) and (X) in (VII)
And
Hence proved.
Conclusion:
It has been proved that the general solution for
(d)
The probability of a transition to spin down, as a function of time.
(d)
Answer to Problem 11.29P
The probability of a transition to spin down, as a function of time is
Explanation of Solution
Write the expression to find the probability of transition to spin down
Given,
Substitute
Now, the probability of a transition to spin down is
Conclusion:
Thus, the probability of a transition to spin down, as a function of time is
(e)
Sketch the resonance curve,
(e)
Answer to Problem 11.29P
The resonance curve,
the full width at half maximum is
Explanation of Solution
Given,
Taking square root on both sides,
Thus, the full width at half maximum,
Conclusion:
The resonance curve,
the full width at half maximum is
(f)
The resonant frequency in a nuclear magnetic resonance experiment and the width of the resonance curve.
(f)
Answer to Problem 11.29P
The resonant frequency in a nuclear magnetic resonance experiment is
Explanation of Solution
Compare Equation 4.156 and 7.89, the gyro-magnetic ratio for a proton is
Where,
Write the expression to find the resonant frequency
Where,
Substitute equation (XI) in the above equation,
Substitute
Write the expression to find the width of the resonance curve
Where,
Thus, the above equation becomes,
Substitute
Conclusion:
Thus, the resonant frequency in a nuclear magnetic resonance experiment is
Want to see more full solutions like this?
Chapter 11 Solutions
Introduction To Quantum Mechanics
- According to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardThree point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.arrow_forwardThe drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
- A car driving at 27m/s veers to the left to avoid a deer in the road. The maneuver takes 2.0s and the direction of travel is altered by 20 degrees. What is the average acceleration during the constant speed maneuver? Do this in accordance with the example in the chapter.arrow_forwardNo No No Chatgpt pls will upvotearrow_forward2 C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO Bendemeer Secondary School Secondary Three Express Physics Chpt 1: Physical Quantities, Unit and Measurements Assignment Name: Chen ShiMan loov neowled soria 25 ( 03 ) Class: 3 Respect 6 Date: 2025.01.22 1 Which group consists only of scalar quantities? ABCD A acceleration, moment and energy store distance, temperature and time length, velocity and current mass, force and speed B D. B Which diagram represents the resultant vector of P and Q? lehtele 시 bas siqpeq olarist of beau eldeo qirie-of-qi P A C -B qadmis rle mengaib priwollot erT S Quilons of qira ono mont aboog eed indicator yh from West eril to Inioqbim srij enisinoo MA (6) 08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld 260 km/h D 1 D. e 51arrow_forward
- The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0 s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s? a (m/s²) as -2 0 2 t(s) 4arrow_forwardTwo solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN. P 125 kN B 125 kN C 0.9 m 1.2 m The smallest allowable value of the diameter d₁ is The smallest allowable value of the diameter d₂ is mm. mm.arrow_forwardWestros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill