GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
7th Edition
ISBN: 9781305866966
Author: STOKER
Publisher: CENGAGE L
Question
Book Icon
Chapter 11, Problem 11.28EP

(a)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/8 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(a)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 1.1 days.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 18(12n) = 1232n = 23

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 3 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 3 half-lives t1/2 = 3.2 days3 = 1.1days

Therefore, the half-life of the given sample is determined as 1.1 days.

Conclusion

Half-life of the given sample is determined.

(b)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/128 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(b)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.46 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 1128(12n) = 1272n = 27

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 7 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 7 half-lives t1/2 = 3.2 days7 = 0.46day

Therefore, the half-life of the given sample is determined as 0.46 day.

Conclusion

Half-life of the given sample is determined.

(c)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/32 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(c)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.64 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 132(12n) = 1252n = 25

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 5 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 5 half-lives t1/2 = 3.2 days5 = 0.64day

Therefore, the half-life of the given sample is determined as 0.64 day.

Conclusion

Half-life of the given sample is determined.

(d)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/512 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(d)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.36 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 1512(12n) = 1292n = 29

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 9 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 9 half-lives t1/2 = 3.2 days9 = 0.36day

Therefore, the half-life of the given sample is determined as 0.36 day.

Conclusion

Half-life of the given sample is determined.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The data for the potential difference of a battery and its temperature are given in the table. Calculate the entropy change in J mol-1 K-1 (indicate the formulas used).Data: F = 96485 C mol-1
In a cell, the change in entropy (AS) can be calculated from the slope of the E° vs 1/T graph. The slope is equal to -AS/R, where R is the gas constant. Is this correct?
Using the Arrhenius equation, it is possible to establish the relationship between the rate constant (k) of a chemical reaction and the temperature (T), in Kelvin (K), the universal gas constant (R), the pre-exponential factor (A) and the activation energy (Ea). This equation is widely applied in studies of chemical kinetics, and is also widely used to determine the activation energy of reactions. In this context, the following graph shows the variation of the rate constant with the inverse of the absolute temperature, for a given chemical reaction that obeys the Arrhenius equation. Based on the analysis of this graph and the concepts acquired about the kinetics of chemical reactions, analyze the following statements:              I. The activation energy (Ea) varies with the temperature of the system.   II. The activation energy (Ea) varies with the concentration of the reactants.        III. The rate constant (K) varies proportionally with temperature.    IV. The value of the…

Chapter 11 Solutions

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP

Ch. 11.4 - The half-life of cobalt-60 is 5.2 years. This...Ch. 11.4 - Prob. 2QQCh. 11.4 - Prob. 3QQCh. 11.4 - Prob. 4QQCh. 11.4 - Prob. 5QQCh. 11.5 - Prob. 1QQCh. 11.5 - The bombardment reaction involving 1123Na and 12H...Ch. 11.5 - Prob. 3QQCh. 11.5 - Prob. 4QQCh. 11.6 - Prob. 1QQCh. 11.6 - In the 14-step uranium-238 decay series a. all...Ch. 11.7 - Prob. 1QQCh. 11.7 - Prob. 2QQCh. 11.8 - Which of the following is not a form of ionizing...Ch. 11.8 - Prob. 2QQCh. 11.8 - Prob. 3QQCh. 11.8 - Prob. 4QQCh. 11.9 - Prob. 1QQCh. 11.9 - Which of the following correctly orders the three...Ch. 11.10 - Prob. 1QQCh. 11.10 - Prob. 2QQCh. 11.10 - Prob. 3QQCh. 11.11 - Prob. 1QQCh. 11.11 - Prob. 2QQCh. 11.11 - Prob. 3QQCh. 11.12 - Prob. 1QQCh. 11.12 - Prob. 2QQCh. 11.12 - Prob. 3QQCh. 11.12 - Prob. 4QQCh. 11.13 - Prob. 1QQCh. 11.13 - Prob. 2QQCh. 11 - Prob. 11.1EPCh. 11 - Prob. 11.2EPCh. 11 - Prob. 11.3EPCh. 11 - Prob. 11.4EPCh. 11 - Prob. 11.5EPCh. 11 - Prob. 11.6EPCh. 11 - Prob. 11.7EPCh. 11 - Prob. 11.8EPCh. 11 - Prob. 11.9EPCh. 11 - Prob. 11.10EPCh. 11 - Prob. 11.11EPCh. 11 - Prob. 11.12EPCh. 11 - Prob. 11.13EPCh. 11 - Prob. 11.14EPCh. 11 - Prob. 11.15EPCh. 11 - Prob. 11.16EPCh. 11 - Prob. 11.17EPCh. 11 - Prob. 11.18EPCh. 11 - Prob. 11.19EPCh. 11 - Prob. 11.20EPCh. 11 - Prob. 11.21EPCh. 11 - Prob. 11.22EPCh. 11 - Prob. 11.23EPCh. 11 - Prob. 11.24EPCh. 11 - Prob. 11.25EPCh. 11 - Prob. 11.26EPCh. 11 - Prob. 11.27EPCh. 11 - Prob. 11.28EPCh. 11 - Prob. 11.29EPCh. 11 - Fill in the blanks in each line of the following...Ch. 11 - Prob. 11.31EPCh. 11 - Prob. 11.32EPCh. 11 - Prob. 11.33EPCh. 11 - Prob. 11.34EPCh. 11 - Prob. 11.35EPCh. 11 - Prob. 11.36EPCh. 11 - Prob. 11.37EPCh. 11 - Prob. 11.38EPCh. 11 - Prob. 11.39EPCh. 11 - Prob. 11.40EPCh. 11 - Prob. 11.41EPCh. 11 - Prob. 11.42EPCh. 11 - Prob. 11.43EPCh. 11 - Prob. 11.44EPCh. 11 - Prob. 11.45EPCh. 11 - Prob. 11.46EPCh. 11 - Prob. 11.47EPCh. 11 - Prob. 11.48EPCh. 11 - Prob. 11.49EPCh. 11 - Prob. 11.50EPCh. 11 - Prob. 11.51EPCh. 11 - Prob. 11.52EPCh. 11 - Prob. 11.53EPCh. 11 - Prob. 11.54EPCh. 11 - Prob. 11.55EPCh. 11 - Prob. 11.56EPCh. 11 - Prob. 11.57EPCh. 11 - Write a chemical equation that involves water as a...Ch. 11 - Prob. 11.59EPCh. 11 - Prob. 11.60EPCh. 11 - Prob. 11.61EPCh. 11 - Prob. 11.62EPCh. 11 - Prob. 11.63EPCh. 11 - Prob. 11.64EPCh. 11 - Prob. 11.65EPCh. 11 - Prob. 11.66EPCh. 11 - Prob. 11.67EPCh. 11 - Prob. 11.68EPCh. 11 - Prob. 11.69EPCh. 11 - Prob. 11.70EPCh. 11 - Prob. 11.71EPCh. 11 - Prob. 11.72EPCh. 11 - Prob. 11.73EPCh. 11 - Prob. 11.74EPCh. 11 - Prob. 11.75EPCh. 11 - Prob. 11.76EPCh. 11 - Prob. 11.77EPCh. 11 - Prob. 11.78EPCh. 11 - Prob. 11.79EPCh. 11 - Prob. 11.80EPCh. 11 - Prob. 11.81EPCh. 11 - Prob. 11.82EPCh. 11 - Prob. 11.83EPCh. 11 - Prob. 11.84EPCh. 11 - Prob. 11.85EPCh. 11 - Prob. 11.86EPCh. 11 - Prob. 11.87EPCh. 11 - Prob. 11.88EPCh. 11 - Prob. 11.89EPCh. 11 - Prob. 11.90EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning