
(a)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/16 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(a)

Answer to Problem 11.27EP
Half-life of the radionuclide is 1.4 days.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 4 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 1.4 days.
Half-life of the given sample is determined.
(b)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/64 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(b)

Answer to Problem 11.27EP
Half-life of the radionuclide is 0.90 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 6 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.90 day.
Half-life of the given sample is determined.
(c)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/256 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(c)

Answer to Problem 11.27EP
Half-life of the radionuclide is 0.68 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 8 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.68 day.
Half-life of the given sample is determined.
(d)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/1024 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(d)

Answer to Problem 11.27EP
Half-life of the radionuclide is 0.54 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 10 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.54 day.
Half-life of the given sample is determined.
Want to see more full solutions like this?
Chapter 11 Solutions
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
- What is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning




