EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
7th Edition
ISBN: 9780100853188
Author: STOKER
Publisher: YUZU
Question
Book Icon
Chapter 11, Problem 11.28EP

(a)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/8 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(a)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 1.1 days.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 18(12n) = 1232n = 23

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 3 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 3 half-lives t1/2 = 3.2 days3 = 1.1days

Therefore, the half-life of the given sample is determined as 1.1 days.

Conclusion

Half-life of the given sample is determined.

(b)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/128 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(b)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.46 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 1128(12n) = 1272n = 27

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 7 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 7 half-lives t1/2 = 3.2 days7 = 0.46day

Therefore, the half-life of the given sample is determined as 0.46 day.

Conclusion

Half-life of the given sample is determined.

(c)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/32 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(c)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.64 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 132(12n) = 1252n = 25

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 5 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 5 half-lives t1/2 = 3.2 days5 = 0.64day

Therefore, the half-life of the given sample is determined as 0.64 day.

Conclusion

Half-life of the given sample is determined.

(d)

Interpretation Introduction

Interpretation:

Half-life of the radionuclide has to be determined if after 3.2 days, 1/512 fraction of undecayed nuclide is present.

Concept Introduction:

Radioactive nuclides undergo disintegration by emission of radiation.  All the radioactive nuclide do not undergo the decay at a same rate.  Some decay rapidly and others decay very slowly.  The nuclear stability can be quantitatively expressed by using the half-life.

The time required for half quantity of the radioactive substance to undergo decay is known as half-life.  It is represented as t1/2.

The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,

(Amountofradionuclideundecayedafternhalflives) =  (Originalamountofradionuclide)  x  (12n)

(d)

Expert Solution
Check Mark

Answer to Problem 11.28EP

Half-life of the radionuclide is 0.36 day.

Explanation of Solution

Number of half-lives can be determined as shown below,

(12n) = 1512(12n) = 1292n = 29

As the bases are equal, the power can be equated.  This gives the number of half-lives that have elapsed as 9 half-lives.

In the problem statement it is given that the time is 3.2 days.  From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,

3.2 days   x  (1 half-lifet1/2) = 9 half-lives t1/2 = 3.2 days9 = 0.36day

Therefore, the half-life of the given sample is determined as 0.36 day.

Conclusion

Half-life of the given sample is determined.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
help tutor please
Q8. A researcher wants to study the effectiveness of a pill intended to reduce stomach heartburn in pregnant women. The researcher chooses randomly 400 women to participate in this experiment for 9 months of their pregnancy period. They all need to have the same diet. The researcher designs two groups of 200 participants: One group take the real medication intended to reduce heartburn, while the other group take placebo medication. In this study what are: Independent variable: Dependent variable: Control variable: Experimental group: " Control group: If the participants do not know who is consuming the real pills and who is consuming the sugar pills. This study is It happens that 40% of the participants do not find the treatment helpful and drop out after 6 months. The researcher throws out the data from subjects that drop out. What type of bias is there in this study? If the company who makes the medication funds this research, what type of bias might exist in this research work?
How do I determine the inhertiance pattern from the pedigree diagram?

Chapter 11 Solutions

EBK GENERAL, ORGANIC, AND BIOLOGICAL CH

Ch. 11.4 - The half-life of cobalt-60 is 5.2 years. This...Ch. 11.4 - Prob. 2QQCh. 11.4 - Prob. 3QQCh. 11.4 - Prob. 4QQCh. 11.4 - Prob. 5QQCh. 11.5 - Prob. 1QQCh. 11.5 - The bombardment reaction involving 1123Na and 12H...Ch. 11.5 - Prob. 3QQCh. 11.5 - Prob. 4QQCh. 11.6 - Prob. 1QQCh. 11.6 - In the 14-step uranium-238 decay series a. all...Ch. 11.7 - Prob. 1QQCh. 11.7 - Prob. 2QQCh. 11.8 - Which of the following is not a form of ionizing...Ch. 11.8 - Prob. 2QQCh. 11.8 - Prob. 3QQCh. 11.8 - Prob. 4QQCh. 11.9 - Prob. 1QQCh. 11.9 - Which of the following correctly orders the three...Ch. 11.10 - Prob. 1QQCh. 11.10 - Prob. 2QQCh. 11.10 - Prob. 3QQCh. 11.11 - Prob. 1QQCh. 11.11 - Prob. 2QQCh. 11.11 - Prob. 3QQCh. 11.12 - Prob. 1QQCh. 11.12 - Prob. 2QQCh. 11.12 - Prob. 3QQCh. 11.12 - Prob. 4QQCh. 11.13 - Prob. 1QQCh. 11.13 - Prob. 2QQCh. 11 - Prob. 11.1EPCh. 11 - Prob. 11.2EPCh. 11 - Prob. 11.3EPCh. 11 - Prob. 11.4EPCh. 11 - Prob. 11.5EPCh. 11 - Prob. 11.6EPCh. 11 - Prob. 11.7EPCh. 11 - Prob. 11.8EPCh. 11 - Prob. 11.9EPCh. 11 - Prob. 11.10EPCh. 11 - Prob. 11.11EPCh. 11 - Prob. 11.12EPCh. 11 - Prob. 11.13EPCh. 11 - Prob. 11.14EPCh. 11 - Prob. 11.15EPCh. 11 - Prob. 11.16EPCh. 11 - Prob. 11.17EPCh. 11 - Prob. 11.18EPCh. 11 - Prob. 11.19EPCh. 11 - Prob. 11.20EPCh. 11 - Prob. 11.21EPCh. 11 - Prob. 11.22EPCh. 11 - Prob. 11.23EPCh. 11 - Prob. 11.24EPCh. 11 - Prob. 11.25EPCh. 11 - Prob. 11.26EPCh. 11 - Prob. 11.27EPCh. 11 - Prob. 11.28EPCh. 11 - Prob. 11.29EPCh. 11 - Fill in the blanks in each line of the following...Ch. 11 - Prob. 11.31EPCh. 11 - Prob. 11.32EPCh. 11 - Prob. 11.33EPCh. 11 - Prob. 11.34EPCh. 11 - Prob. 11.35EPCh. 11 - Prob. 11.36EPCh. 11 - Prob. 11.37EPCh. 11 - Prob. 11.38EPCh. 11 - Prob. 11.39EPCh. 11 - Prob. 11.40EPCh. 11 - Prob. 11.41EPCh. 11 - Prob. 11.42EPCh. 11 - Prob. 11.43EPCh. 11 - Prob. 11.44EPCh. 11 - Prob. 11.45EPCh. 11 - Prob. 11.46EPCh. 11 - Prob. 11.47EPCh. 11 - Prob. 11.48EPCh. 11 - Prob. 11.49EPCh. 11 - Prob. 11.50EPCh. 11 - Prob. 11.51EPCh. 11 - Prob. 11.52EPCh. 11 - Prob. 11.53EPCh. 11 - Prob. 11.54EPCh. 11 - Prob. 11.55EPCh. 11 - Prob. 11.56EPCh. 11 - Prob. 11.57EPCh. 11 - Write a chemical equation that involves water as a...Ch. 11 - Prob. 11.59EPCh. 11 - Prob. 11.60EPCh. 11 - Prob. 11.61EPCh. 11 - Prob. 11.62EPCh. 11 - Prob. 11.63EPCh. 11 - Prob. 11.64EPCh. 11 - Prob. 11.65EPCh. 11 - Prob. 11.66EPCh. 11 - Prob. 11.67EPCh. 11 - Prob. 11.68EPCh. 11 - Prob. 11.69EPCh. 11 - Prob. 11.70EPCh. 11 - Prob. 11.71EPCh. 11 - Prob. 11.72EPCh. 11 - Prob. 11.73EPCh. 11 - Prob. 11.74EPCh. 11 - Prob. 11.75EPCh. 11 - Prob. 11.76EPCh. 11 - Prob. 11.77EPCh. 11 - Prob. 11.78EPCh. 11 - Prob. 11.79EPCh. 11 - Prob. 11.80EPCh. 11 - Prob. 11.81EPCh. 11 - Prob. 11.82EPCh. 11 - Prob. 11.83EPCh. 11 - Prob. 11.84EPCh. 11 - Prob. 11.85EPCh. 11 - Prob. 11.86EPCh. 11 - Prob. 11.87EPCh. 11 - Prob. 11.88EPCh. 11 - Prob. 11.89EPCh. 11 - Prob. 11.90EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biomedical Instrumentation Systems
Chemistry
ISBN:9781133478294
Author:Chatterjee
Publisher:Cengage
Text book image
Curren'S Math For Meds: Dosages & Sol
Nursing
ISBN:9781305143531
Author:CURREN
Publisher:Cengage
Text book image
Cardiopulmonary Anatomy & Physiology
Biology
ISBN:9781337794909
Author:Des Jardins, Terry.
Publisher:Cengage Learning,
Text book image
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage