Determine the moments at A,B, and C, then draw the moment diagram for the beam. The moment of inertia of each span is indicated in the figure. Assume the support at B is a roller and A and C are fixed. E = 29(103) ksi.
The moments at A, B, and C, and to draw the moment diagram for the beam.
Answer to Problem 11.1P
The moment at A for member AB is,
The moment at B for member BA is,
The moment at B for member BC is,
The moment at C for member CB is,
The following figure shows the moment diagram of the beam.
Explanation of Solution
Calculation:
The following figure shows the beam diagram.
Figure-(1)
Calculate the fixed end moments at every end as shown below.
Calculate fixed end moments of member AB.
Here, given load is
Substitute
Calculate fixed end moments of member BA.
Substitute
Calculate fixed end moments of member BC.
Substitute
Calculate fixed end moments of member CB.
Substitute
Calculate the member relative stiffness factors on either side of B.
Calculate relative stiffness of member BA.
Here,
Substitute
Calculate relative stiffness of member BC.
Substitute
Calculate the distribution factors for different members.
Calculate distribution factors for AB.
Calculate distribution factors for BA.
Substitute
Substitute
Calculate distribution factors for BC.
Substitute
Substitute
Calculate distribution factors for CB.
Calculate the balance moment for each member as shown below.
Calculate balance moment foe BA.
Calculate balance moment for BC.
Draw the moment distribution table as shown below.
Joints | A | B | C | |
Member | AB | BA | BC | CB |
DF | | | | |
FEM | | | | |
Balance | - | | | - |
Carry over moment | | | | |
Balance | | | | |
| | | | |
Consider the section AB as shown below.
Figure-(2)
Write the Equation for sum of vertical forces.
Here, vertical reaction at A and B are
Write the Equation for sum of moment about A.
Substitute
Calculate the distance at which shear force changing its sign for maximum moment.
Write the Equation for shear force at distance
Equate the value of shear force to zero for distance.
Calculate the value of maximum moment at a distance of
Consider the section BC as shown below.
Figure-(3)
Write the Equation for sum of vertical forces.
Write the Equation for sum of moment about B.
Here, vertical reaction at C is
Substitute
For member BC, moment will be maximum at the center.
Calculate maximum moment at the center of BC.
Conclusion:
The moment at A for member AB is,
The moment at B for member BA is,
The moment at B for member BC is,
The moment at C for member CB is,
The following diagram shows the moment diagram of the beam.
Figure-(4)
Want to see more full solutions like this?
Chapter 11 Solutions
EBK STRUCTURAL ANALYSIS
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Database Concepts (8th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
- Assignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forwardPlease show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forward
- Find required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward•Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forward
- A1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward
- Please calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forwardPlease answer the following and show me the step by step soarrow_forwardPlss answer the following show me the solution step bg steparrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Residential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning