a.
Interpretation: Whether the cell potential of given galvanic cell increase, decrease, or remain the same when
Concept Introduction: The measure of energy per unit charge which is available from the
Nernst equation gives the relationship between standard reduction potential,
Where
This equation is specified at room temperature,
a.

Answer to Problem 111AE
The value of
Explanation of Solution
Given:
The half reactions of standard galvanic cell as:
The reduction potential values for the half reactions of standard galvanic cell is:
Since, the reduction potential value of silver is greater than copper so, the silver will undergo reduction and copper will undergo oxidation so, the half-reactions are written as:
To balance the charge on both sides, the reduction reaction,
Adding both the reactions to get the overall reactions as:
So, the overall balanced reaction for the galvanic cell is:
Now, according to Nernst equation at room temperature,
Now, on adding
b.
Interpretation: Whether the cell potential of given galvanic cell increase, decrease, or remain the same when
Concept Introduction: The measure of energy per unit charge which is available from the redox reactions to carry out the reaction is said to be cell potential.
Nernst equation gives the relationship between standard reduction potential,
Where
This equation is specified at room temperature,
b.

Answer to Problem 111AE
The value of
Explanation of Solution
According to Nernst equation at room temperature,
Now, on adding
c.
Interpretation: Whether the cell potential of given galvanic cell increase, decrease, or remain the same when
Concept Introduction: The measure of energy per unit charge which is available from the redox reactions to carry out the reaction is said to be cell potential.
Nernst equation gives the relationship between standard reduction potential,
Where
This equation is specified at room temperature,
c.

Answer to Problem 111AE
The value of
Explanation of Solution
According to Nernst equation at room temperature,
Now, on adding
d.
Interpretation: Whether the cell potential of given galvanic cell increase, decrease, or remain the same when water is added to both half-cell compartment until the volume of solution is doubled.
Concept Introduction: The measure of energy per unit charge which is available from the redox reactions to carry out the reaction is said to be cell potential.
Nernst equation gives the relationship between standard reduction potential,
Where
This equation is specified at room temperature,
d.

Answer to Problem 111AE
The value of
Explanation of Solution
According to Nernst equation at room temperature,
Now, on adding water to both half-cell compartment until the volume of solution gets doubled it will result in decreasing the concentration of both the ions, silver ion,
e.
Interpretation: Whether the cell potential of given galvanic cell increase, decrease, or remain the same when silver electrode is replaced with platinum electrode:
Concept Introduction: The measure of energy per unit charge which is available from the redox reactions to carry out the reaction is said to be cell potential.
Nernst equation gives the relationship between standard reduction potential,
Where
This equation is specified at room temperature,
e.

Answer to Problem 111AE
The value of
Explanation of Solution
Given:
The half reactions of standard galvanic cell as:
The reduction potential values for the half reactions of standard galvanic cell is:
Since, the reduction potential value of platinum is greater than copper so, the platinum will undergo reduction and copper will undergo oxidation so, the half-reactions are written as:
Adding both the reactions to get the overall reactions as:
So, the overall balanced reaction for the galvanic cell is:
Now, according to Nernst equation at room temperature,
So, on replacing the silver electrode by platinum electrode, the
Want to see more full solutions like this?
Chapter 11 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- CUE COLUMN NOTES (A. Determine Stereoisomers it has ⑤ Identify any meso B compounds cl Br cl -c-c-c-c-¿- 1 CI C- | 2,4-Dichloro-3-bromopentanearrow_forwardThe acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBTarrow_forwardWhat does the phrase 'fit for purpose' mean in relation to analytical chemistry? Please provide examples too.arrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density × NO2 ○ donating O donating O withdrawing O withdrawing O electron-rich electron-deficient no inductive effects O no resonance effects O similar to benzene E [ CI O donating withdrawing O no inductive effects Explanation Check ○ donating withdrawing no resonance effects electron-rich electron-deficient O similar to benzene © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accesarrow_forwardUnderstanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- * Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forwardDraw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





