
Concept explainers
A uniform plane wave at frequency f= 100 MHz propagates in a material having conductivity c = 3.0 S/m and dielectric constant đ�œ–r' = 8.00. The wave carries electric field amplitude E0 = 100 V/m. (a) Calculate the loss tangent and determine whether the medium would qualify as a good dielectric or a good conductor, (b) Calculate a, đ�›½, and

(a)
The loss tangent and whether the material is good dielectric or good conductor.
Answer to Problem 11.11P
The value of loss tangent is
Explanation of Solution
Calculation:
The line loss tangent is given by
Here,
The permeability
Here,
Substitute equation (2) in equation (1).
The conversion from
The conversion of
Hence, the frequency is,
Radial frequency
Here,
Substitute
Substitute
Since, the value is greater than 10; the material is a good conductor.
Conclusion:
Therefore, the value of loss tangent is

(b)
The attenuation coefficient
Answer to Problem 11.11P
The attenuation coefficient
Explanation of Solution
Calculation:
The value of
Here,
The value of
Here,
Substitute
For a good conductor, the value of
Hence, the phase constant
The value of wave impedance is given by
Substitute
For a good conductor, the value of impedance angle is
The wave impedance
Conclusion:
Thus, attenuation coefficient

(c)
The electric field in phasor form.
Answer to Problem 11.11P
The phasor expression of electric field is
Explanation of Solution
Calculation:
The electric field in phasor form is given by
Here,
Substitute
Conclusion:
The phasor expression of electric field is

(d)
The magnetic field strength in phasor form.
Answer to Problem 11.11P
The magnetic field strength in phasor form is
Explanation of Solution
Calculation:
The magnetic field strength in phasor form is given by,
Substitute
Conclusion:
Thus, the magnetic field strength in phasor form is

(e)
The time averaging Poynting vector.
Answer to Problem 11.11P
The time averaging Poynting vector is
Explanation of Solution
Calculation:
The time averaging Poynting vector is given by
Here,
Substitute
Conclusion:
The time averaging Poynting vector is

(f)
The6 dB material thickness at which the wave power drops to 25 % of its value on entry.
Answer to Problem 11.11P
The
Explanation of Solution
Calculation:
The power loss in dB can be given by
Here,
Substitute
The intensity of the wave is represented by the Poynting vector. In this case, the Poynting vector changes in the direction of wave propagation, with the factor of
Taking intensity in the term of Poynting vector,
Conclusion:
Thus, the 6-dB material thickness is
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Electromagnetics
- solve by impedancearrow_forwardConsider the circuit diagram below. Compute a single equivalent impedance for this circuit for a source frequency of F = 60 Hz. Express your final answer as a complex impedance with rectangular coordinates. You must show your all your work for the complex math. Include a diagram of the equivalent circuit as part of your solution.arrow_forwardConsider the circuit diagram below. Compute a single equivalent impedance for this circuit for a source frequency of f = 165 Hz. Express your final answer as a phasor with polar coordinates. You must show your all your work for the complex math. Include a diagram of the equivalent circuit as part of your solution.arrow_forward
- Consider the circuit diagram below. Using mesh analysis, compute the currents (a) IR1, (b) IL1, and (c) IC1. Express your final answers as phasors using polar coordinates with phase angles measured in degrees. Your solution should include the circuit diagram redrawn to indicate these currents and their directions. You must solve the system of equations using MATLAB and include the code or commands you ran as part of your solution.arrow_forwarduse kvl to solvearrow_forwardR1 is 978 ohms R2 is 2150 ohms R3 is 4780 R1 is parallel to R2 and R2 is parallel to R3 and R1 and R3 are in seriesarrow_forward
- Q7 For the circuit shown in Fig. 2.20, the transistors are identical and have the following parameters: hfe = 50, hie = 1.1K, hre = 0, and hoe = 0. Calculate Auf, Rif and Rof. Ans: 45.4; 112 KQ; 129. 25 V 10k 47k 4.7k Vo 150k w Vs 47k 4.7k W 22 5μF 33k 50uF 50μF 4.7k 4.7k R₁ Rof Rif R1000 Fig. 2.20 Circuit for Q7.arrow_forwardQ6)) The transistors in the feedback amplifier shown are identical, and their h-parameters are.. hie = 1.1k, hfe = 50, hre=o, and hoe = 0. Calculate Auf, Rif and Rof. {Ans: 6031583; 4. Kor. Is 4 4.7 k www 4.7k 91k 4.7k 91k 10k 1k. 10k 21000 4.7k w 15k Fig. 2.19 Circuit for Q6.arrow_forwardQ5 For the circuit shown in Fig. 2.18, hie =1.1 KQ, hfe =50. Find Avf, Rif and Rof Ans: -3.2; 193 ; 728 N. Vcc Vs Rs=10kQ Re=4KQ RF - = 40ΚΩ www Fig. 2.18 Circuit for Qs.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





