Concept explainers
A uniform plane wave at frequency f= 100 MHz propagates in a material having conductivity c = 3.0 S/m and dielectric constant đ�œ–r' = 8.00. The wave carries electric field amplitude E0 = 100 V/m. (a) Calculate the loss tangent and determine whether the medium would qualify as a good dielectric or a good conductor, (b) Calculate a, đ�›½, and
(a)
The loss tangent and whether the material is good dielectric or good conductor.
Answer to Problem 11.11P
The value of loss tangent is
Explanation of Solution
Calculation:
The line loss tangent is given by
Here,
The permeability
Here,
Substitute equation (2) in equation (1).
The conversion from
The conversion of
Hence, the frequency is,
Radial frequency
Here,
Substitute
Substitute
Since, the value is greater than 10; the material is a good conductor.
Conclusion:
Therefore, the value of loss tangent is
(b)
The attenuation coefficient
Answer to Problem 11.11P
The attenuation coefficient
Explanation of Solution
Calculation:
The value of
Here,
The value of
Here,
Substitute
For a good conductor, the value of
Hence, the phase constant
The value of wave impedance is given by
Substitute
For a good conductor, the value of impedance angle is
The wave impedance
Conclusion:
Thus, attenuation coefficient
(c)
The electric field in phasor form.
Answer to Problem 11.11P
The phasor expression of electric field is
Explanation of Solution
Calculation:
The electric field in phasor form is given by
Here,
Substitute
Conclusion:
The phasor expression of electric field is
(d)
The magnetic field strength in phasor form.
Answer to Problem 11.11P
The magnetic field strength in phasor form is
Explanation of Solution
Calculation:
The magnetic field strength in phasor form is given by,
Substitute
Conclusion:
Thus, the magnetic field strength in phasor form is
(e)
The time averaging Poynting vector.
Answer to Problem 11.11P
The time averaging Poynting vector is
Explanation of Solution
Calculation:
The time averaging Poynting vector is given by
Here,
Substitute
Conclusion:
The time averaging Poynting vector is
(f)
The6 dB material thickness at which the wave power drops to 25 % of its value on entry.
Answer to Problem 11.11P
The
Explanation of Solution
Calculation:
The power loss in dB can be given by
Here,
Substitute
The intensity of the wave is represented by the Poynting vector. In this case, the Poynting vector changes in the direction of wave propagation, with the factor of
Taking intensity in the term of Poynting vector,
Conclusion:
Thus, the 6-dB material thickness is
Want to see more full solutions like this?
Chapter 11 Solutions
Engineering Electromagnetics
- The plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the impedance value of the wave? 238 Ohm 377 Ohm 120 Ohm 150 Ohmarrow_forwardi need the answer quicklyarrow_forward• Drill Problem 1.3 Figure 1.14 shows a triangular wave. What is the fundamental frequency of this wave? Express the fundamental frequency in units of Hz or rad/s. handwriting 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time t, seconds FIGURE 1.14 Triangular wave alternating between -1 and +1 with fundamental period of 0.2 second. Amplitudearrow_forward
- I've seen this is the formula to calculate the wave frequency in free space. But where is this from?arrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the negative z direction has an amplitude of 45mA/m and a frequency of 10° Hz. If the wave is polarized on the positive x direction and the phase velocity of the wave is 10°m/s. Assume the initial phase is 30°. Find the wave number. Select one: O a. The wave number is: 67 O b. The wave number is: 2T O c. The wave number is: 2.5 O d. The wave number is: 7.6arrow_forwardA standing wave with wavelength A = 1.2 m and frequency f%= 100 Hz is generated on a stretched cord. For an element of the cord at x = 0.5 m, the maximum transverse velocity is v(y,max) = 2Tt m/s. The amplitude A of each of the individual waves producing the standing wave is: 0.01 m 0.03 m ) 0.0125 m 0.025 m 0.02 miarrow_forward
- Short answer asap.please..arrow_forwardA plane wave of frequency 100 KHz propagates in a copper alloy. The magnetic permeability of the alloy is that of free space. The wavelength within the alloy is also known to be 0.5 millimeters. What would be the corresponding conductivity of this alloy in (Siemens / meter) Please answer within 1 hour.I will upvote.arrow_forwardElectrical Engineering 3. Write the expressions for energy reflectance r and transmittance t for an acoustic wave incident from water side onto a steel interface. Insert values of Zwater = 1.5 MRayl and Zteel = 46 MRayl and calculate values. From the diagram below, give the values of r and t and compare to your answers from the formulas. acr 0.8 0.6 0.4 0.2 10 dar 20 acr 30 40 Incident angle, deg. Energy conversion coefficientarrow_forward
- (t) = Fejtáx with is The wave parameters M₂ = 4.5 μ0₁ E₂ = 1.280. Calculate the magnetic field phasor and time-Overased pgniting vector for this wave. with electric field phasor propapating in a perfect dielectric medium 4) you are given a plane wavearrow_forwardThe Subject is Electromagnetic II .arrow_forwardAccording to the book the answer is 29.8arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,