The concentration of solute particles in water has to be calculated. Concept Introduction: When a semipermeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in a volume of the solvent with respect to time. The flow of solvent through a semipermeable membrane into the solution is called as osmosis. By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure. The osmotic pressure of solution is calculated by using, Π=MRT Here, Π= osmotic pressure(in atm) M=molarity of solution(in M) R= Gas constant T=Temperature(in K)
The concentration of solute particles in water has to be calculated. Concept Introduction: When a semipermeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in a volume of the solvent with respect to time. The flow of solvent through a semipermeable membrane into the solution is called as osmosis. By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure. The osmotic pressure of solution is calculated by using, Π=MRT Here, Π= osmotic pressure(in atm) M=molarity of solution(in M) R= Gas constant T=Temperature(in K)
Solution Summary: The author explains that the concentration of solute particles in water has to be calculated by using a semipermeable membrane.
Interpretation: The concentration of solute particles in water has to be calculated.
Concept Introduction:
When a semipermeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in a volume of the solvent with respect to time. The flow of solvent through a semipermeable membrane into the solution is called as osmosis.
By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure.
The osmotic pressure of solution is calculated by using,
How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4?
If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of H2SO4 and in the final volume (2.000 L) and assume random error.
Don't used hand raiting and don't used Ai solution
What should be use to complete the
reaction?
CN
CN